We consider a Mean Field Games model where the dynamics of the agents is subdiffusive. According to the optimal control interpretation of the problem, we get a system involving frac- tional time-derivatives for the Hamilton-Jacobi-Bellman and the Fokker-Planck equations. We discuss separately the well-posedness for each of the two equations and then we prove existence and uniqueness of the solution to the Mean Field Games system.
A time-fractional mean field game
Fabio Camilli;
2019-01-01
Abstract
We consider a Mean Field Games model where the dynamics of the agents is subdiffusive. According to the optimal control interpretation of the problem, we get a system involving frac- tional time-derivatives for the Hamilton-Jacobi-Bellman and the Fokker-Planck equations. We discuss separately the well-posedness for each of the two equations and then we prove existence and uniqueness of the solution to the Mean Field Games system.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.