We consider the variational structure of a time-fractional second-order mean field games (MFG) system. The MFG system consists of time-fractional Fokker–Planck and Hamilton–Jacobi–Bellman equations. In such a situation, the individual agent follows a non-Markovian dynamics given by a subdiffusion process. Hence, the results of this paper extend the theory of variational MFG to the subdiffusive situation.
Variational Time-Fractional Mean Field Games
Camilli F.
2020-01-01
Abstract
We consider the variational structure of a time-fractional second-order mean field games (MFG) system. The MFG system consists of time-fractional Fokker–Planck and Hamilton–Jacobi–Bellman equations. In such a situation, the individual agent follows a non-Markovian dynamics given by a subdiffusion process. Hence, the results of this paper extend the theory of variational MFG to the subdiffusive situation.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.