We consider the variational structure of a time-fractional second-order mean field games (MFG) system. The MFG system consists of time-fractional Fokker–Planck and Hamilton–Jacobi–Bellman equations. In such a situation, the individual agent follows a non-Markovian dynamics given by a subdiffusion process. Hence, the results of this paper extend the theory of variational MFG to the subdiffusive situation.

Variational Time-Fractional Mean Field Games

Camilli F.
2020-01-01

Abstract

We consider the variational structure of a time-fractional second-order mean field games (MFG) system. The MFG system consists of time-fractional Fokker–Planck and Hamilton–Jacobi–Bellman equations. In such a situation, the individual agent follows a non-Markovian dynamics given by a subdiffusion process. Hence, the results of this paper extend the theory of variational MFG to the subdiffusive situation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843550
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact