In this paper we will study stability properties for viscosity solutions of geometric equations. We will prove that, if the interface is regular (i.e. it is the boundary of an open set and it is not fat), the signed distance function from the front is stable for geometric perturbations of the equation. This result is based on representation formulas for viscosity solutions in terms of distance functions from the level sets. An application of the previous result to stability of approximation schemes is also presented
A stability property for the generalized mean curvature flow equation
CAMILLI, FABIO
1998-01-01
Abstract
In this paper we will study stability properties for viscosity solutions of geometric equations. We will prove that, if the interface is regular (i.e. it is the boundary of an open set and it is not fat), the signed distance function from the front is stable for geometric perturbations of the equation. This result is based on representation formulas for viscosity solutions in terms of distance functions from the level sets. An application of the previous result to stability of approximation schemes is also presentedFile in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.