Aim of this note is to study the infinity Laplace operator and the corresponding Absolutely Minimizing Lipschitz Extension problem on the Sierpinski gasket in the spirit of the classical construction of Kigami for the Laplacian. We introduce a notion of infinity harmonic functions on pre-fractal sets and we show that these functions solve a Lipschitz extension problem in the discrete setting. Then we prove that the limit of the infinity harmonic functions on the pre-fractal sets solves the Absolutely Minimizing Lipschitz Extension problem on the Sierpinski gasket.

Absolutely Minimizing Lipschitz Extensions and infinity harmonic functions on the Sierpinski gasket

CAMILLI, FABIO;
2017-01-01

Abstract

Aim of this note is to study the infinity Laplace operator and the corresponding Absolutely Minimizing Lipschitz Extension problem on the Sierpinski gasket in the spirit of the classical construction of Kigami for the Laplacian. We introduce a notion of infinity harmonic functions on pre-fractal sets and we show that these functions solve a Lipschitz extension problem in the discrete setting. Then we prove that the limit of the infinity harmonic functions on the pre-fractal sets solves the Absolutely Minimizing Lipschitz Extension problem on the Sierpinski gasket.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843559
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact