Given a sequence of functions fn converging in some topology to a function f, in general the 0-level set of fn does not give a good approximation of the one of f. In this paper we show that, if we consider an appropriate perturbation of the 0-level set of fn, we get a sequence of sets converging to the 0-level set of f, where the type of set convergence depends on the type of convergence of fn to f.

A note on convergence of level sets

CAMILLI, FABIO
1999-01-01

Abstract

Given a sequence of functions fn converging in some topology to a function f, in general the 0-level set of fn does not give a good approximation of the one of f. In this paper we show that, if we consider an appropriate perturbation of the 0-level set of fn, we get a sequence of sets converging to the 0-level set of f, where the type of set convergence depends on the type of convergence of fn to f.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843585
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 2
social impact