In this article we consider the Keller-Segel model for chemotaxis on networks, both in the doubly parabolic case and in the parabolic-elliptic one. Introducing appropriate transition conditions at vertices, we prove the existence of a time global and spatially continuous solution for each of the two systems. The main tool we use in the proof of the existence result are optimal decay estimates for the fundamental solution of the heat equation on a weighted network.

Parabolic models for chemotaxis on weighted networks

Camilli, Fabio;
2017-01-01

Abstract

In this article we consider the Keller-Segel model for chemotaxis on networks, both in the doubly parabolic case and in the parabolic-elliptic one. Introducing appropriate transition conditions at vertices, we prove the existence of a time global and spatially continuous solution for each of the two systems. The main tool we use in the proof of the existence result are optimal decay estimates for the fundamental solution of the heat equation on a weighted network.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843588
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 15
social impact