In this paper we study the Hamilton-Jacobi equation H(x, Du) = F(x) in a bounded locally Lipschitz domain Omega --> R-n with Dirichlet boundary conditions. H and f are nonnegative continuous functions and f can have a very general zero set. A characterization of maximal subsolutions by means of viscosity test functions is obtained and some stability results are proved.

Maximal subsolutions for a class of degenerate Hamilton-Jacobi equations

CAMILLI, FABIO
1999-01-01

Abstract

In this paper we study the Hamilton-Jacobi equation H(x, Du) = F(x) in a bounded locally Lipschitz domain Omega --> R-n with Dirichlet boundary conditions. H and f are nonnegative continuous functions and f can have a very general zero set. A characterization of maximal subsolutions by means of viscosity test functions is obtained and some stability results are proved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843598
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact