In this article we consider a model first order mean field game problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution (v;m) can be obtained as the limit of the solutions of the second order mean field game problems, when the noise parameter tends to zero (see [18]). We propose a semi-discrete in time approximation of the system and, under natural assumptions, we prove that it is well posed and that it converges to (v;m) when the discretization parameter tends to zero. © American Institute of Mathematical Sciences.

A semi-discrete approximation for a first order mean field game problem

CAMILLI, FABIO;
2012-01-01

Abstract

In this article we consider a model first order mean field game problem, introduced by J.M. Lasry and P.L. Lions in [18]. Its solution (v;m) can be obtained as the limit of the solutions of the second order mean field game problems, when the noise parameter tends to zero (see [18]). We propose a semi-discrete in time approximation of the system and, under natural assumptions, we prove that it is well posed and that it converges to (v;m) when the discretization parameter tends to zero. © American Institute of Mathematical Sciences.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843602
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 21
social impact