This paper concerns periodic multiscale homogenization for fully nonlinear equations of the form u(epsilon) + H-epsilon (x, x/epsilon, ..., x/epsilon(h), Du(epsilon), D(2)u(epsilon)) = 0. The operators H-epsilon are a regular perturbations of some uniformly elliptic, convex operator H-epsilon. As epsilon -> 0(+), the solutions u(epsilon) converge locally uniformly to the solution u of a suitably defined effective problem. The purpose of this paper is to obtain an estimate of the corresponding rate of convergence. Finally, some examples are discussed.

On the convergence rate in multiscale homogenization of fully nonlinear elliptic problems

CAMILLI, FABIO;
2011-01-01

Abstract

This paper concerns periodic multiscale homogenization for fully nonlinear equations of the form u(epsilon) + H-epsilon (x, x/epsilon, ..., x/epsilon(h), Du(epsilon), D(2)u(epsilon)) = 0. The operators H-epsilon are a regular perturbations of some uniformly elliptic, convex operator H-epsilon. As epsilon -> 0(+), the solutions u(epsilon) converge locally uniformly to the solution u of a suitably defined effective problem. The purpose of this paper is to obtain an estimate of the corresponding rate of convergence. Finally, some examples are discussed.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843605
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact