We present a generalization of Zubov's method to perturbed dierential equations. The goal is to charac- terize the domain of attraction of a set which is uniformly locally asymptotically stable under all admissible time vary- ing perturbations. We show that in this general setting the straightforward generalization of the classical Zubov's equa- tions has a unique viscosity solution which characterizes the robust domain of attraction as a suitable sublevel set

A generalization of Zubov's method to perturbed systems

CAMILLI, FABIO;
2002-01-01

Abstract

We present a generalization of Zubov's method to perturbed dierential equations. The goal is to charac- terize the domain of attraction of a set which is uniformly locally asymptotically stable under all admissible time vary- ing perturbations. We show that in this general setting the straightforward generalization of the classical Zubov's equa- tions has a unique viscosity solution which characterizes the robust domain of attraction as a suitable sublevel set
2002
0780375165
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/843624
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 6
social impact