Photothermal therapy combined with chemotherapy has shown great promise in the treatment of cancer. In this synergistic system, a safe, stable, and efficient photothermal agent is desired. Herein, an effective photothermal agent, carbon quantum dots (CQDs), was initially synthesized and then rationally constructed a folic acid (FA)-targeted photothermal multifunctional nanoplatform by encapsulating CQDs and the anticancer drug doxorubicin (DOX) in the liposomes. Indocyanine green (ICG), a near infrared (NIR) photothermal agent, approved by the U.S. Food and Drug Administration, was embedded in the bilayer membrane to further enhance the photothermal effects and facilitate the rapid cleavage of liposomes for drug release. Triggered by the NIR laser, this engineered photothermal multifunctional nanoplatform, not only exhibited an excellent performance with the photothermal conversion efficiency of up to 47.14%, but also achieved controlled release of the payloads. In vitro, and in vivo experiments demonstrated that the photothermal multifunctional nanoplatform had excellent biocompatibility, enhanced tumor-specific targeting, stimuli-responsive drug release, effective cancer cell killing and tumor suppression through multi-modal synergistic therapy. The successful construction of this NIR light-triggered targeted photothermal multifunctional nanoplatform will provide a promising strategy for the design and development of synergistic chemo-photothermal combination therapy and improve the therapeutic efficacy of cancer treatment.

Rational construction of CQDs-based targeted multifunctional nanoplatform for synergistic chemo-photothermal tumor therapy.

Xie Y;Celia C
;
2025-01-01

Abstract

Photothermal therapy combined with chemotherapy has shown great promise in the treatment of cancer. In this synergistic system, a safe, stable, and efficient photothermal agent is desired. Herein, an effective photothermal agent, carbon quantum dots (CQDs), was initially synthesized and then rationally constructed a folic acid (FA)-targeted photothermal multifunctional nanoplatform by encapsulating CQDs and the anticancer drug doxorubicin (DOX) in the liposomes. Indocyanine green (ICG), a near infrared (NIR) photothermal agent, approved by the U.S. Food and Drug Administration, was embedded in the bilayer membrane to further enhance the photothermal effects and facilitate the rapid cleavage of liposomes for drug release. Triggered by the NIR laser, this engineered photothermal multifunctional nanoplatform, not only exhibited an excellent performance with the photothermal conversion efficiency of up to 47.14%, but also achieved controlled release of the payloads. In vitro, and in vivo experiments demonstrated that the photothermal multifunctional nanoplatform had excellent biocompatibility, enhanced tumor-specific targeting, stimuli-responsive drug release, effective cancer cell killing and tumor suppression through multi-modal synergistic therapy. The successful construction of this NIR light-triggered targeted photothermal multifunctional nanoplatform will provide a promising strategy for the design and development of synergistic chemo-photothermal combination therapy and improve the therapeutic efficacy of cancer treatment.
2025
Inglese
ELETTRONICO
677
Pt B
79
90
12
Carbon quantum dots; Liposomes; Photodynamic therapy and chemotherapy; Photothermal therapy, Synergistic therapy.
10
info:eu-repo/semantics/article
262
Liu, C; Chang, Q; Fan, X; Meng, N; Lu, J; Shu, Q; Xie, Y; Celia, C; Wei, G; Deng, X.
1 Contributo su Rivista::1.1 Articolo in rivista
none
   Innovation, digitalisation and sustainability for the diffused economy in Central Italy - VITALITY
   VITALITY
   M.U.R. - Ministero dell'Università e della Ricerca
   ECS00000041
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/847596
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact