We use Graph Neural Networks on signature-augmented graphs derived from time series for Predictive Maintenance. With this technique, we propose a solution to the Intelligent Data Analysis Industrial Challenge 2024 on the newly released SCANIA Component X dataset. We describe an Exploratory Data Analysis and preprocessing of the dataset, proposing improvements for its description in the SCANIA paper.

Predicting the Failure of Component X in the Scania Dataset with Graph Neural Networks

Parton, Maurizio;Metta, Carlo;
2024-01-01

Abstract

We use Graph Neural Networks on signature-augmented graphs derived from time series for Predictive Maintenance. With this technique, we propose a solution to the Intelligent Data Analysis Industrial Challenge 2024 on the newly released SCANIA Component X dataset. We describe an Exploratory Data Analysis and preprocessing of the dataset, proposing improvements for its description in the SCANIA paper.
2024
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Inglese
22nd International Symposium on Intelligent Data Analysis, IDA 2024
2024
swe
14642 LNCS
251
259
9
9783031585555
9783031585531
Springer Science and Business Media Deutschland GmbH
Graph Neural Networks; Predictive Maintenance; SCANIA Component X; Visibility Graphs
none
Parton, Maurizio; Fois, Andrea; Vegliò, Michelangelo; Metta, Carlo; Gregnanin, Marco
273
info:eu-repo/semantics/conferenceObject
5
4 Contributo in Atti di Convegno (Proceeding)::4.1 Contributo in Atti di convegno
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/848037
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 5
social impact