Brain damage can be induced by oxygen deprivation. It is known that hypoxic or anoxic conditions can lead to changes in the expression levels of non-coding RNAs (ncRNAs), which, in turn, can be related to Central Nervous System (CNS) injuries. Therefore, it could be useful to investigate the involvement of non-coding RNAs (ncRNAs), as well as the underlying mechanisms which are able to modulate them in brain damage induced by hypoxic or anoxic conditions. In this review, we focused on recent research that associates these conditions with long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). The results of this review demonstrate that the expression of both lncRNAs and circRNAs can be influenced by oxygen deprivation conditions and so they can contribute to inducing damage or providing neuroprotection by affecting specific molecular pathways. Furthermore, several experimental studies have shown that ncRNA activity can be regulated by compounds, thus also modifying their transcriptomic profile and their effects on CNS damages induced by hypoxic/anoxic events.

LncRNAs and CircRNAs as Strategies against Pathological Conditions Caused by a Hypoxic/Anoxic State

Mazzon, Emanuela
2023-01-01

Abstract

Brain damage can be induced by oxygen deprivation. It is known that hypoxic or anoxic conditions can lead to changes in the expression levels of non-coding RNAs (ncRNAs), which, in turn, can be related to Central Nervous System (CNS) injuries. Therefore, it could be useful to investigate the involvement of non-coding RNAs (ncRNAs), as well as the underlying mechanisms which are able to modulate them in brain damage induced by hypoxic or anoxic conditions. In this review, we focused on recent research that associates these conditions with long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs). The results of this review demonstrate that the expression of both lncRNAs and circRNAs can be influenced by oxygen deprivation conditions and so they can contribute to inducing damage or providing neuroprotection by affecting specific molecular pathways. Furthermore, several experimental studies have shown that ncRNA activity can be regulated by compounds, thus also modifying their transcriptomic profile and their effects on CNS damages induced by hypoxic/anoxic events.
2023
Inglese
13
33
CircRNAs; HIBD (hypoxic ischemic brain damage); LncRNAs; anoxic brain damage; hypoxic brain damage
Goal 3: Good health and well-being
no
3
info:eu-repo/semantics/article
262
Anchesi, Ivan; Schepici, Giovanni; Mazzon, Emanuela
1 Contributo su Rivista::1.1 Articolo in rivista
none
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/848895
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 1
social impact