Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.0, which enabled flexible incorporation of PTDs at various genomic loci of influenza viruses, including internal regions and terminal ends. The PROTAR 2.0 influenza viruses maintained efficient replication in UPS-deficient cells for large-scale production but were attenuated by PTD-mediated proteasomal degradation of viral proteins in conventional cells. Incorporation of multiple PTDs into one virus generated optimized PROTAR 2.0 vaccine candidates. In animal models, PROTAR 2.0 vaccine candidates were highly attenuated and a single-dose intranasal immunization induced robust and broad immune responses that provided complete cross-reactive protection against both homologous and heterologous viral challenges.

PROTAR Vaccine 2.0 generates influenza vaccines by degrading multiple viral proteins

Plebani, Roberto;
2025-01-01

Abstract

Manipulating viral protein stability using the cellular ubiquitin-proteasome system (UPS) represents a promising approach for developing live-attenuated vaccines. The first-generation proteolysis-targeting (PROTAR) vaccine had limitations, as it incorporates proteasome-targeting degrons (PTDs) at only the terminal ends of viral proteins, potentially restricting its broad application. Here we developed the next-generation PROTAR vaccine approach, referred to as PROTAR 2.0, which enabled flexible incorporation of PTDs at various genomic loci of influenza viruses, including internal regions and terminal ends. The PROTAR 2.0 influenza viruses maintained efficient replication in UPS-deficient cells for large-scale production but were attenuated by PTD-mediated proteasomal degradation of viral proteins in conventional cells. Incorporation of multiple PTDs into one virus generated optimized PROTAR 2.0 vaccine candidates. In animal models, PROTAR 2.0 vaccine candidates were highly attenuated and a single-dose intranasal immunization induced robust and broad immune responses that provided complete cross-reactive protection against both homologous and heterologous viral challenges.
File in questo prodotto:
File Dimensione Formato  
Zhang et al - Nat Chem Biol - 2025_rid.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 10.21 MB
Formato Adobe PDF
10.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/851754
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact