Skin cancer affects over 2 million people worldwide each year. Although dermoscopy is the gold standard screening technique, it only assesses the superficial features of skin lesions. Novel approaches based on thermal investigation have revealed a correlation between thermal recovery and vascular pattern alterations, which is an important factor in discriminating malignant and benign lesions. In this study, a dynamic thermal-imaging system was designed, developed, and validated in a real clinical scenario. The system is non-invasive, compact, and cost-effective, comprising a cooling probe and an image acquisition system equipped with RGB and thermal cameras. The system incorporates a machine-learning classification algorithm for skin cancer screening. The system showed an accuracy of 89.7% in distinguishing between malignant and benign lesions in a case study involving 58 patients and classified sub-classes of lesions (i.e., melanoma and nevi) with an accuracy of 95.5%. These findings underscore the potential benefit of the proposed dynamic thermal-imaging system as a support tool for non-invasive screening and early detection of malignant skin lesions. © 2018 IEEE.

A Thermal-Imaging System and Machine-Learning Classification Algorithm for Skin Cancer Screening

Moccia, S.;
2025-01-01

Abstract

Skin cancer affects over 2 million people worldwide each year. Although dermoscopy is the gold standard screening technique, it only assesses the superficial features of skin lesions. Novel approaches based on thermal investigation have revealed a correlation between thermal recovery and vascular pattern alterations, which is an important factor in discriminating malignant and benign lesions. In this study, a dynamic thermal-imaging system was designed, developed, and validated in a real clinical scenario. The system is non-invasive, compact, and cost-effective, comprising a cooling probe and an image acquisition system equipped with RGB and thermal cameras. The system incorporates a machine-learning classification algorithm for skin cancer screening. The system showed an accuracy of 89.7% in distinguishing between malignant and benign lesions in a case study involving 58 patients and classified sub-classes of lesions (i.e., melanoma and nevi) with an accuracy of 95.5%. These findings underscore the potential benefit of the proposed dynamic thermal-imaging system as a support tool for non-invasive screening and early detection of malignant skin lesions. © 2018 IEEE.
File in questo prodotto:
File Dimensione Formato  
A_Thermal-Imaging_System_and_Machine-Learning_Classification_Algorithm_for_Skin_Cancer_Screening.pdf

Solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 19.7 MB
Formato Adobe PDF
19.7 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/856033
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact