The interplay between diet, host genetics, microbiota, and immune system has a key role in the pathogenesis of inflammatory bowel disease (IBD). Although the causal pathophysiological mechanisms remain unknown, numerous dietary nutrients have been shown to regulate gut mucosal immune function, being effective in influencing innate or adaptive immunity. Here, we proved that transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel, mediates LPS- evoked Ca2+ influx in macrophages leading to their activation. Additionally, we showed that TRPM8 is selectively blocked by the dietary flavonoid luteolin, which induced a pro-tolerogenic phenotype in pro-inflammatory macrophages. Accordingly, genetic deletion of Trpm8 in macrophages caused a deficit in the activation of pro-inflammatory metabolic and transcriptional reprogramming, leading to reduced production of key pro-inflammatory cytokines such as interleukin (IL)-1 beta, IL-6, and tumor necrosis factor (TNF)-alpha. The TRPM8 anti-inflammatory effect was found to be dependent on lactate which in turn induces IL-10 gene expression. Adoptive transfer of TRPM8-deficient bone marrow in wild-type mice improved intestinal inflammation in a model of colitis. Accordingly, oral administration of luteolin protected mice against colitis through an impairment in the innate immune response. Our study reveals the potential of targeting TRPM8 through specific nutrient interventions to regulate immune function in sub-clinical scenarios or to treat inflammatory diseases, primarily driven by chronic immune responses, such as IBD.

Dietary targeting of TRPM8 rewires macrophage immunometabolism reducing colitis severity

Ferrante, C;Chiavaroli, A;Pagano, E
;
2025-01-01

Abstract

The interplay between diet, host genetics, microbiota, and immune system has a key role in the pathogenesis of inflammatory bowel disease (IBD). Although the causal pathophysiological mechanisms remain unknown, numerous dietary nutrients have been shown to regulate gut mucosal immune function, being effective in influencing innate or adaptive immunity. Here, we proved that transient receptor potential melastatin 8 (TRPM8), a non-selective cation channel, mediates LPS- evoked Ca2+ influx in macrophages leading to their activation. Additionally, we showed that TRPM8 is selectively blocked by the dietary flavonoid luteolin, which induced a pro-tolerogenic phenotype in pro-inflammatory macrophages. Accordingly, genetic deletion of Trpm8 in macrophages caused a deficit in the activation of pro-inflammatory metabolic and transcriptional reprogramming, leading to reduced production of key pro-inflammatory cytokines such as interleukin (IL)-1 beta, IL-6, and tumor necrosis factor (TNF)-alpha. The TRPM8 anti-inflammatory effect was found to be dependent on lactate which in turn induces IL-10 gene expression. Adoptive transfer of TRPM8-deficient bone marrow in wild-type mice improved intestinal inflammation in a model of colitis. Accordingly, oral administration of luteolin protected mice against colitis through an impairment in the innate immune response. Our study reveals the potential of targeting TRPM8 through specific nutrient interventions to regulate immune function in sub-clinical scenarios or to treat inflammatory diseases, primarily driven by chronic immune responses, such as IBD.
File in questo prodotto:
File Dimensione Formato  
41419_2025_Article_7553.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 4.78 MB
Formato Adobe PDF
4.78 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/857053
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact