The human skin hosts a complex ecosystem of microorganisms, collectively termed the skin microbiota. This intricate skin microbial community plays a pivotal role in human health and disease. Microbes interact with the host skin cells and immune cells through microbial products such as metabolites and secreted proteins. Research in recent years has received significant attention towards extracellular vesicles (EVs)—mediated microbe–host communication. In this concise review, we discuss the role of skin microbiota EVs in the regulation and maintenance of functional dermal tissue. The human topical microbiota is predominantly composed of bacteria, with Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes being the predominant phyla. Fungi, particularly Malassezia species, also constitute a significant component of this dermal microbial ecosystem. Nevertheless, research on EVs has primarily focused on a limited number of bacterial and fungal species pertaining to skin, including Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, Lactobacillus plantarum and Malassezia sympodialis. Particularly, EVs derived from Staphylococcus epidermidis and Lactobacillus plantarum show a promising outcome towards the management of skin inflammation and skin ageing. Given the demonstrated ability of EVs to penetrate the skin cells and deliver beneficial compounds, their application in cosmetic and cosmeceutical products remains in its early stages. Accordingly, we also address the need for extensive research, challenges and opportunities to fully harness their potential for skincare regimens.
Human Skin Microbiota‐Derived Extracellular Vesicles and Their Cosmeceutical Possibilities—A Mini Review
Diomede, FrancescaUltimo
2025-01-01
Abstract
The human skin hosts a complex ecosystem of microorganisms, collectively termed the skin microbiota. This intricate skin microbial community plays a pivotal role in human health and disease. Microbes interact with the host skin cells and immune cells through microbial products such as metabolites and secreted proteins. Research in recent years has received significant attention towards extracellular vesicles (EVs)—mediated microbe–host communication. In this concise review, we discuss the role of skin microbiota EVs in the regulation and maintenance of functional dermal tissue. The human topical microbiota is predominantly composed of bacteria, with Actinobacteria, Firmicutes, Proteobacteria and Bacteroidetes being the predominant phyla. Fungi, particularly Malassezia species, also constitute a significant component of this dermal microbial ecosystem. Nevertheless, research on EVs has primarily focused on a limited number of bacterial and fungal species pertaining to skin, including Staphylococcus aureus, Staphylococcus epidermidis, Propionibacterium acnes, Lactobacillus plantarum and Malassezia sympodialis. Particularly, EVs derived from Staphylococcus epidermidis and Lactobacillus plantarum show a promising outcome towards the management of skin inflammation and skin ageing. Given the demonstrated ability of EVs to penetrate the skin cells and deliver beneficial compounds, their application in cosmetic and cosmeceutical products remains in its early stages. Accordingly, we also address the need for extensive research, challenges and opportunities to fully harness their potential for skincare regimens.| File | Dimensione | Formato | |
|---|---|---|---|
|
2025 Human Skin Microbiota‐Rajan.pdf
accesso aperto
Tipologia:
PDF editoriale
Dimensione
204.32 kB
Formato
Adobe PDF
|
204.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


