Extracellular vesicles (EVs) are membrane-bound structures released by all cell types. They play a critical role in intercellular communication by transferring their cargo, comprising proteins, lipids, metabolites, RNAs, miRNAs, and DNA fragments, to recipient cells. This transfer influences gene expression, signaling pathways, and cellular behavior. Due to their ability to alter the physiology of recipient cells, EVs hold significant therapeutic potential. Additionally, EVs are implicated in various physiological and pathological processes, including immune regulation, cancer progression, and cardiovascular diseases. EVs have been detected in many biological fluids, such as peripheral blood, saliva, urine, cerebrospinal fluid, and breast milk. The cargo of EVs dynamically reflects the physiological and pathological state of their parent cells, making them promising candidates for liquid biopsies in various clinical conditions. Specifically, different EV subtypes in cardiovascular diseases have been studied, with both endothelial and platelet-derived EVs playing significant roles in cardiovascular pathologies. This review focuses on the diagnostic and prognostic potential of endothelial and platelet-derived EVs in cardiovascular diseases, highlighting the role of EV subpopulations.

Diagnostic and prognostic roles of endothelial- and platelet-derived extracellular vesicles in cardiovascular diseases

Di Febo, Riccardo;Saeed, Zeeba;Serafini, Francesco;Brocco, Davide;D'Ascanio, Francesca;Pizzi, Andrea Delli;Tinari, Nicola;Lanuti, Paola;Renda, Giulia
2025-01-01

Abstract

Extracellular vesicles (EVs) are membrane-bound structures released by all cell types. They play a critical role in intercellular communication by transferring their cargo, comprising proteins, lipids, metabolites, RNAs, miRNAs, and DNA fragments, to recipient cells. This transfer influences gene expression, signaling pathways, and cellular behavior. Due to their ability to alter the physiology of recipient cells, EVs hold significant therapeutic potential. Additionally, EVs are implicated in various physiological and pathological processes, including immune regulation, cancer progression, and cardiovascular diseases. EVs have been detected in many biological fluids, such as peripheral blood, saliva, urine, cerebrospinal fluid, and breast milk. The cargo of EVs dynamically reflects the physiological and pathological state of their parent cells, making them promising candidates for liquid biopsies in various clinical conditions. Specifically, different EV subtypes in cardiovascular diseases have been studied, with both endothelial and platelet-derived EVs playing significant roles in cardiovascular pathologies. This review focuses on the diagnostic and prognostic potential of endothelial and platelet-derived EVs in cardiovascular diseases, highlighting the role of EV subpopulations.
File in questo prodotto:
File Dimensione Formato  
s12967-025-06522-2.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 1.73 MB
Formato Adobe PDF
1.73 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/861714
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact