We propose a novel framework for predicting various air pollutants 12-hours ahead at construction sites. The framework utilizes two predictive models, comparing their performances. An experiment conducted on data acquired from sensor stations at a construction site proves that each model can be used to predict certain types of pollutants.

Air Pollution Forecasting at Construction Sites: An Intelligent Comparative Framework

Gill, Eliezer Zahid
Primo
;
Cangelmi, Leonardo
Secondo
;
Cellini, Paola;Cardone, Daniela
Penultimo
;
Amelio, Alessia
Ultimo
2025-01-01

Abstract

We propose a novel framework for predicting various air pollutants 12-hours ahead at construction sites. The framework utilizes two predictive models, comparing their performances. An experiment conducted on data acquired from sensor stations at a construction site proves that each model can be used to predict certain types of pollutants.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/863994
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact