Multiple sclerosis (MS) is a chronic neurological disease often resulting in motor and autonomic dysfunction. This case report investigates the acute and subacute effects of the EXOPULSE Mollii Suit (EMS), a wearable device capable of delivering transcutaneous electrical nerve stimulation to multiple anatomical regions, in a 43-year-old woman with MS. The patient underwent a clinical evaluation before the EMS treatment, during which central nervous system (CNS) and autonomic nervous system (ANS) responses were monitored using electroencephalography (EEG), heart rate variability (HRV), and infrared thermography (IRT). Immediately after the first EMS application, the clinical evaluation was repeated. The intervention continued at home for one month, followed by a post-treatment evaluation similar to the pre-intervention assessment. Functional evaluations showed improvements in sit-to-stand performance (from 8 s to 6 s), muscle tone (MAS scale for the right side from 3 to 2 and for the left side from 2 to 1), clonus, and spasticity (from 3 to 2). EEG results revealed decreased θ-band power (on average, from 0.394 to 0.253) and microstates’ reorganization. ANS activity modifications were highlighted by both HRV (e.g., RMSSD from 0.118 to 0.0837) and IRT metrics (e.g., nose tip temperature sample entropy from 0.090 to 0.239). This study provides the first integrated analysis of CNS and ANS responses to EMS in an MS patient, combining functional scales with multimodal instrumental measurements, emphasizing the possible advantages EMS for MS treatment. Although preliminary, these results demonstrated the potentiality of the EMS to deliver effective and personalized rehabilitative interventions for MS patients.

Acute and Subacute Effects of Session with the EXOPULSE Mollii Suit in a Multiple Sclerosis Patient: A Case Report

Romano, Francesco;Cardone, Daniela;Forte, Alessandro;Di Iorio, Angelo;Russo, Emanuele Francesco;Perpetuini, David
Penultimo
;
Merla, Arcangelo
Ultimo
2025-01-01

Abstract

Multiple sclerosis (MS) is a chronic neurological disease often resulting in motor and autonomic dysfunction. This case report investigates the acute and subacute effects of the EXOPULSE Mollii Suit (EMS), a wearable device capable of delivering transcutaneous electrical nerve stimulation to multiple anatomical regions, in a 43-year-old woman with MS. The patient underwent a clinical evaluation before the EMS treatment, during which central nervous system (CNS) and autonomic nervous system (ANS) responses were monitored using electroencephalography (EEG), heart rate variability (HRV), and infrared thermography (IRT). Immediately after the first EMS application, the clinical evaluation was repeated. The intervention continued at home for one month, followed by a post-treatment evaluation similar to the pre-intervention assessment. Functional evaluations showed improvements in sit-to-stand performance (from 8 s to 6 s), muscle tone (MAS scale for the right side from 3 to 2 and for the left side from 2 to 1), clonus, and spasticity (from 3 to 2). EEG results revealed decreased θ-band power (on average, from 0.394 to 0.253) and microstates’ reorganization. ANS activity modifications were highlighted by both HRV (e.g., RMSSD from 0.118 to 0.0837) and IRT metrics (e.g., nose tip temperature sample entropy from 0.090 to 0.239). This study provides the first integrated analysis of CNS and ANS responses to EMS in an MS patient, combining functional scales with multimodal instrumental measurements, emphasizing the possible advantages EMS for MS treatment. Although preliminary, these results demonstrated the potentiality of the EMS to deliver effective and personalized rehabilitative interventions for MS patients.
File in questo prodotto:
File Dimensione Formato  
bioengineering-12-00994-v2.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/864513
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact