We prove a Li-Yau gradient estimate for positive solutions to the heat equation defined on a metric star graph G given by the heat kernel formula. As consequence, we derive a Harnack estimate and a Liouville property for bounded harmonic functions. The argument exploits an explicit representation formula for the heat kernel on G.
Li-Yau Inequality and Related Properties on Metric Star Graphs
Camilli F.
2025-01-01
Abstract
We prove a Li-Yau gradient estimate for positive solutions to the heat equation defined on a metric star graph G given by the heat kernel formula. As consequence, we derive a Harnack estimate and a Liouville property for bounded harmonic functions. The argument exploits an explicit representation formula for the heat kernel on G.File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


