Background: The morphology of implant threads plays a crucial role in achieving primary stability, which is essential for successful osseointegration and immediate loading of dental implants. This study aimed to evaluate how different implant thread pitches and an under-preparation drilling technique impact primary stability using an in vitro model. Methods: The study was conducted on low-density polyurethane bone models with and without cortical layers. The following three different implant thread profiles were tested: CYROTH 0.40 (0.40 mm), CYROTH 0.45 (0.45 mm), and CYROTH T (0.35 mm). Two different drilling procedures were utilized, with diameters of 3.4 mm and 3.7 mm, at a low rotational speed of 30 rpm. Primary stability was assessed by measuring insertion torque (IT), removal torque (RT), and resonance frequency analysis (RFA). Results: The low rotational speed of 30 rpm was found to be effective for achieving favorable fixation parameters in all scenarios. The 0.45 mm thread consistently exhibited higher implant stability quotient (ISQ) values (from two to six points higher) compared to the 0.40 mm and standard 0.35 mm threads, while also requiring lower IT. The highest ISQ values were recorded in the 20 pounds per cubic foot (PCF) block with a cortical layer using the 0.45 mm thread and a 3.4 mm drill. The under-preparation using the 3.4 mm drill resulted in higher IT and RT values than the 3.7 mm drill. Conclusions: This study demonstrated that implant thread pitch and drilling technique are critical factors influencing primary stability. Utilizing a wider thread pitch (0.45 mm) along with an under-preparation drilling protocol can significantly improve implant stability, even in low-density bone, without the need for excessive IT. These findings suggest that selecting the appropriate implant macrogeometry and surgical technique can optimize the primary stability of dental implants.

The Effect of Implant Thread’s Pitch on Primary Stability: An In Vitro Polyurethane Study with Under-Preparation and Low-Speed Drilling

Di Pietro, Natalia
Secondo
;
Romasco, Tea;
2025-01-01

Abstract

Background: The morphology of implant threads plays a crucial role in achieving primary stability, which is essential for successful osseointegration and immediate loading of dental implants. This study aimed to evaluate how different implant thread pitches and an under-preparation drilling technique impact primary stability using an in vitro model. Methods: The study was conducted on low-density polyurethane bone models with and without cortical layers. The following three different implant thread profiles were tested: CYROTH 0.40 (0.40 mm), CYROTH 0.45 (0.45 mm), and CYROTH T (0.35 mm). Two different drilling procedures were utilized, with diameters of 3.4 mm and 3.7 mm, at a low rotational speed of 30 rpm. Primary stability was assessed by measuring insertion torque (IT), removal torque (RT), and resonance frequency analysis (RFA). Results: The low rotational speed of 30 rpm was found to be effective for achieving favorable fixation parameters in all scenarios. The 0.45 mm thread consistently exhibited higher implant stability quotient (ISQ) values (from two to six points higher) compared to the 0.40 mm and standard 0.35 mm threads, while also requiring lower IT. The highest ISQ values were recorded in the 20 pounds per cubic foot (PCF) block with a cortical layer using the 0.45 mm thread and a 3.4 mm drill. The under-preparation using the 3.4 mm drill resulted in higher IT and RT values than the 3.7 mm drill. Conclusions: This study demonstrated that implant thread pitch and drilling technique are critical factors influencing primary stability. Utilizing a wider thread pitch (0.45 mm) along with an under-preparation drilling protocol can significantly improve implant stability, even in low-density bone, without the need for excessive IT. These findings suggest that selecting the appropriate implant macrogeometry and surgical technique can optimize the primary stability of dental implants.
File in questo prodotto:
File Dimensione Formato  
Tumedei_applsci-15-11245.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.2 MB
Formato Adobe PDF
2.2 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/867134
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact