Resting hand tremor is a low-frequency, involuntary oscillation influenced by mechanical and neural factors, often manifesting as inter-limb asymmetry. Therefore, the aim of this study was to investigate whether a single complex hand proprioceptive task can acutely modulate tremor in healthy young adults and whether it can induce asymmetry between limbs. Fifty participants (age: 25.0 ± 2.5 years) completed a 40-min proprioceptive task (anteroposterior, mediolateral, clockwise, and counterclockwise), with bilateral resting tremor recorded via triaxial accelerometry before and immediately after the intervention on both dominant and non-dominant limbs. Frequency-domain analysis showed a significant (p < 0.001) increase in tremor amplitude and a small decrease in mean frequency in the 2–4 Hz band immediately after the complex hand proprioceptive task for both limbs. These findings provide novel evidence that a single, wearable-based protocol can transiently modulate tremor dynamics, supporting the use of a non-invasive tool for neuromuscular monitoring in sport, rehabilitation, and clinical practice.
Acute Effects of Complex Hand Proprioceptive Task on Low-Frequency Hand Rest Tremor
Fusco, AndreaUltimo
2025-01-01
Abstract
Resting hand tremor is a low-frequency, involuntary oscillation influenced by mechanical and neural factors, often manifesting as inter-limb asymmetry. Therefore, the aim of this study was to investigate whether a single complex hand proprioceptive task can acutely modulate tremor in healthy young adults and whether it can induce asymmetry between limbs. Fifty participants (age: 25.0 ± 2.5 years) completed a 40-min proprioceptive task (anteroposterior, mediolateral, clockwise, and counterclockwise), with bilateral resting tremor recorded via triaxial accelerometry before and immediately after the intervention on both dominant and non-dominant limbs. Frequency-domain analysis showed a significant (p < 0.001) increase in tremor amplitude and a small decrease in mean frequency in the 2–4 Hz band immediately after the complex hand proprioceptive task for both limbs. These findings provide novel evidence that a single, wearable-based protocol can transiently modulate tremor dynamics, supporting the use of a non-invasive tool for neuromuscular monitoring in sport, rehabilitation, and clinical practice.| File | Dimensione | Formato | |
|---|---|---|---|
|
Di Rocco et al. 2025_Sensors-25-06502-v3.pdf
accesso aperto
Descrizione: Di Rocco et al. 2025_Sensors-25-06502-v3
Tipologia:
PDF editoriale
Dimensione
929.55 kB
Formato
Adobe PDF
|
929.55 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


