The 1983 M6.9 Borah Peak, Idaho, earthquake is one of the largest historical normal fault earthquakes in the western United States. We quantified meter-scale vertical change along the 35 km-long rupture using topographic differencing of 1966 aerial imagery and 2019 lidar-derived data. The initial differencing results are largely obscured by horizontal and vertical georeferencing errors and flight-line stripes. Our error corrections are designed to be insensitive to the coseismic deformation and reduced error by 50%. We calculated vertical separation and resolved a maximum of 2.02 ± 0.46 m at Doublespring Pass. Our vertical separation measurements are generally consistent with those from prior studies using field data and post-earthquake topographic data. However, the differencing measurements are a few decimeters lower than these prior measurements, indicating that differencing can isolate historical from prehistoric earthquake deformation. Our study demonstrates that revisiting historical earthquakes can provide new insights into the magnitude and patterns of coseismic deformation.

Unveiling Coseismic Deformation From Differenced Legacy Aerial Photography and Modern Lidar Topography: The 1983 M6.9 Borah Peak Earthquake, Idaho, USA

Bello S.
2025-01-01

Abstract

The 1983 M6.9 Borah Peak, Idaho, earthquake is one of the largest historical normal fault earthquakes in the western United States. We quantified meter-scale vertical change along the 35 km-long rupture using topographic differencing of 1966 aerial imagery and 2019 lidar-derived data. The initial differencing results are largely obscured by horizontal and vertical georeferencing errors and flight-line stripes. Our error corrections are designed to be insensitive to the coseismic deformation and reduced error by 50%. We calculated vertical separation and resolved a maximum of 2.02 ± 0.46 m at Doublespring Pass. Our vertical separation measurements are generally consistent with those from prior studies using field data and post-earthquake topographic data. However, the differencing measurements are a few decimeters lower than these prior measurements, indicating that differencing can isolate historical from prehistoric earthquake deformation. Our study demonstrates that revisiting historical earthquakes can provide new insights into the magnitude and patterns of coseismic deformation.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/868134
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact