Given a fractional integrated, autoregressive, moving average, ARFIMA(p, d, q) process, the simultaneous estimation of the short and long memory parameters can be achieved by maximum likelihood estimators. In this paper, following a two-step algorithm, the coefficients are estimated combining the maximum likelihood estimators with the general orthogonal decomposition of stochastic processes. In particular, the principal component analysis of stochastic processes is exploited to estimate the short memory parameters, which are plugged into the maximum likelihood function to obtain the fractional differencing d. Key words: ARFIMA processes, Karhunen Lo~ve decomposition, Whittle MLE

Parametric Estimation for ARFIMA Models via Spectral Methods

COLI, Mauro;FONTANELLA, Lara;GRANTURCO, Mariagrazia
2005-01-01

Abstract

Given a fractional integrated, autoregressive, moving average, ARFIMA(p, d, q) process, the simultaneous estimation of the short and long memory parameters can be achieved by maximum likelihood estimators. In this paper, following a two-step algorithm, the coefficients are estimated combining the maximum likelihood estimators with the general orthogonal decomposition of stochastic processes. In particular, the principal component analysis of stochastic processes is exploited to estimate the short memory parameters, which are plugged into the maximum likelihood function to obtain the fractional differencing d. Key words: ARFIMA processes, Karhunen Lo~ve decomposition, Whittle MLE
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/119008
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact