BACKGROUND: It has been proposed that the anticonvulsant drug phenytoin (PHT) requires bioactivation to reactive intermediate(s) to achieve its recognized teratogenic potential and that embryonal detoxification power may play a fundamental role in the teratogenic response. On this basis, we sought to investigate the potential effects of a teratogenic exposure to PHT on the activities of antioxidant and GSH-related detoxifying enzymes in gestational murine tissues. METHODS: Pregnant Swiss mice were injected intraperitoneally with 0 (vehicle) or 65 mg/kg of PHT on gestation day (GD) 12 (plug day = GD 1). Biochemical determinations, including activities of glutathione transferase, glutathione peroxidase, glutathione reductase, glyoxalase I, glyoxalase II, catalase, and superoxide dismutase, were carried out on maternal and embryonic/fetal livers and in placentas on GD 14 and 19. RESULTS: The major findings of this study show that (1) organogenesis-stage conceptal tissues have detectable levels of all the tested enzymes; (2) most of the embryonic liver and placental enzymes investigated undergo a significant induction within 48 hr (GD 14) after PHT administration; and (3) in the same tissues a down-regulation of enzyme activities is noted near term (GD 19). CONCLUSIONS: Overall, these findings show that teratogenic exposure to PHT is associated with a modulation of reactive-intermediates-scavenging enzyme activities, and provide further support for role of generation of reactive intermediates in PHT-induced teratogenesis.

Antioxidant and GSH-related enzyme response to a single teratogenic exposure to the anticonvulsant phenytoin: temporospatial evaluation.

AMICARELLI, FERNANDA;TIBONI, Gian Mario;DI ILIO, Carmine
2000-01-01

Abstract

BACKGROUND: It has been proposed that the anticonvulsant drug phenytoin (PHT) requires bioactivation to reactive intermediate(s) to achieve its recognized teratogenic potential and that embryonal detoxification power may play a fundamental role in the teratogenic response. On this basis, we sought to investigate the potential effects of a teratogenic exposure to PHT on the activities of antioxidant and GSH-related detoxifying enzymes in gestational murine tissues. METHODS: Pregnant Swiss mice were injected intraperitoneally with 0 (vehicle) or 65 mg/kg of PHT on gestation day (GD) 12 (plug day = GD 1). Biochemical determinations, including activities of glutathione transferase, glutathione peroxidase, glutathione reductase, glyoxalase I, glyoxalase II, catalase, and superoxide dismutase, were carried out on maternal and embryonic/fetal livers and in placentas on GD 14 and 19. RESULTS: The major findings of this study show that (1) organogenesis-stage conceptal tissues have detectable levels of all the tested enzymes; (2) most of the embryonic liver and placental enzymes investigated undergo a significant induction within 48 hr (GD 14) after PHT administration; and (3) in the same tissues a down-regulation of enzyme activities is noted near term (GD 19). CONCLUSIONS: Overall, these findings show that teratogenic exposure to PHT is associated with a modulation of reactive-intermediates-scavenging enzyme activities, and provide further support for role of generation of reactive intermediates in PHT-induced teratogenesis.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/120986
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact