A Zn–salophen complex has been incorporated into POPC large unilamellar liposomes (LUV) obtained in phosphate buffer at pH 7.4. Fluorescence optical microscopy and anisotropy measurements show that the complex is located at the liposomal surface, close to the polar headgroups. The interaction of the POPC phosphate group with Zn2+ slowly leads to demetallation of the complex. The process follows first order kinetics and rate constants have been measured fluorimetrically in pure water and in buffered aqueous solution. The coordination of the phosphate group of monomeric POPC with salophen zinc also occurs in chloroform as detected by ESI-MS measurements. The effect of the Zn–salophen complex on the stability of POPC LUV has been evaluated at 25 °C by measuring the rate of release of entrapped 5(6)-carboxyfluorescein (CF) in the presence and in the absence of Triton X-100 as the perturbing agent. It turns out that the inclusion of the complex significantly increases the stability of POPC LUV.

KINETICS OF DEMETALLATION OF A ZINC-SALOPHEN COMPLEX INTO LIPOSOMES

GASBARRI, Carla;ANGELINI, Guido;FONTANA, Antonella;DE MARIA, Paolo;SIANI, Gabriella;
2012-01-01

Abstract

A Zn–salophen complex has been incorporated into POPC large unilamellar liposomes (LUV) obtained in phosphate buffer at pH 7.4. Fluorescence optical microscopy and anisotropy measurements show that the complex is located at the liposomal surface, close to the polar headgroups. The interaction of the POPC phosphate group with Zn2+ slowly leads to demetallation of the complex. The process follows first order kinetics and rate constants have been measured fluorimetrically in pure water and in buffered aqueous solution. The coordination of the phosphate group of monomeric POPC with salophen zinc also occurs in chloroform as detected by ESI-MS measurements. The effect of the Zn–salophen complex on the stability of POPC LUV has been evaluated at 25 °C by measuring the rate of release of entrapped 5(6)-carboxyfluorescein (CF) in the presence and in the absence of Triton X-100 as the perturbing agent. It turns out that the inclusion of the complex significantly increases the stability of POPC LUV.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/199857
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact