Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest.
New Frontiers in Selective Human MAO-B Inhibitors
CARRADORI, Simone;
2015-01-01
Abstract
Accumulating evidence shows a relationship between the human MAO-B (hMAO-B) enzyme and neuropsychiatric/degenerative disorder, personality traits, type II alcoholism, borderline personality disorders, aggressiveness and violence in crime, obsessive-compulsive disorder, depression, suicide, schizophrenia, anorexia nervosa, migraine, dementia, and PD. Thus, MAO-B represents an attractive target for the treatment of a number of human diseases. The discovery, development, and therapeutic use of drugs that inhibit MAO-B are major challenges for future therapy. Various compounds and drugs that selectively target this isoform have been discovered recently. These agents are synthetic compounds or natural products and their analogues, including chalcones, pyrazoles, chromones, coumarins, xanthines, isatin derivatives, thiazolidindiones, (thiazol-2-yl)hydrazones, and analogues of marketed drugs. Despite considerable efforts in understanding the binding interaction with specific substrates or inhibitors, structural information available for the rational design of new hMAO-B inhibitors remains unsatisfactory. Therefore, the quest for novel, potent, and selective hMAO-B inhibitors remains of high interest.File | Dimensione | Formato | |
---|---|---|---|
J Med Chem 2015.pdf
accesso aperto
Tipologia:
Documento in Post-print
Dimensione
1.03 MB
Formato
Adobe PDF
|
1.03 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.