The use of particulate titanium dioxide (TiO2) as an active sunscreen ingredient has raised concerns about potential risks from TiO2-mediated free radical formation. To date, remediation attempts have concentrated on reducing the yield of free radical generation by TiO2 upon sunlight exposure. The problem with this approach is that given the band gap in TiO2, production of radical and the ensuing reactive oxygen species (ROS) is completely normal. Our strategy is based on a nontoxic, biocompatible shell that neutralizes the free radicals by scavenging them with natural antioxidants before they exit the particle. The new lignin@TiO2 composites preserve the scattering and absorption properties of TiO2 because the particles retain their nanoscale dimensions as preferred by the cosmetic industry. Although the target properties for photocatalysis and sunprotection applications are opposite, we argue that exactly the same knowledge is required to optimize either one.

Improving the Sunscreen Properties of TiO2 through an Understanding of Its Catalytic Properties

MORSELLA, MICHELA;D'ALESSANDRO, Nicola;
2016-01-01

Abstract

The use of particulate titanium dioxide (TiO2) as an active sunscreen ingredient has raised concerns about potential risks from TiO2-mediated free radical formation. To date, remediation attempts have concentrated on reducing the yield of free radical generation by TiO2 upon sunlight exposure. The problem with this approach is that given the band gap in TiO2, production of radical and the ensuing reactive oxygen species (ROS) is completely normal. Our strategy is based on a nontoxic, biocompatible shell that neutralizes the free radicals by scavenging them with natural antioxidants before they exit the particle. The new lignin@TiO2 composites preserve the scattering and absorption properties of TiO2 because the particles retain their nanoscale dimensions as preferred by the cosmetic industry. Although the target properties for photocatalysis and sunprotection applications are opposite, we argue that exactly the same knowledge is required to optimize either one.
File in questo prodotto:
File Dimensione Formato  
ACS_Omega_Michela_Scaiano.pdf

Solo gestori archivio

Descrizione: Articolo principale
Tipologia: Documento in Post-print
Dimensione 2.49 MB
Formato Adobe PDF
2.49 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/663082
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 95
  • ???jsp.display-item.citation.isi??? 85
social impact