The somatic component of follicular structure is a mixture of different cell types, represented by Granulosa cells (GCs) that are the paracrine regulators of the oocyte growth. GCs finely support this process by a continuous bidirectional talk with oocyte, which ensure oocyte quality and competence. Specific pathways are involved in the cross-talk and in both GCs and oocyte development. This review summarizes data from GCs gene expression analysis concerning both their physiological role and their interaction with oocyte. We also explore the CGs transcriptome modifications induced by controlled ovarian stimulation (COS) or pathological conditions and their impact in reproduction. The transcriptome analysis of GCs could be a powerful tool to improve our knowledge about the pathways involved in oocyte development. This approach, associated with new technologies as RNA-seq could allow the identifications of new noninvasive biological markers of oocyte quality to increase the efficiency of clinical IVF. Moreover, GCs expression analysis could be useful to shed light on new therapeutic targets by providing new options for the treatment of infertility.

Inside the granulosa transcriptome

D'AURORA, MARCO
Primo
;
SPERDUTI, SAMANTHA;STUPPIA, Liborio;GATTA, Valentina
Ultimo
2016-01-01

Abstract

The somatic component of follicular structure is a mixture of different cell types, represented by Granulosa cells (GCs) that are the paracrine regulators of the oocyte growth. GCs finely support this process by a continuous bidirectional talk with oocyte, which ensure oocyte quality and competence. Specific pathways are involved in the cross-talk and in both GCs and oocyte development. This review summarizes data from GCs gene expression analysis concerning both their physiological role and their interaction with oocyte. We also explore the CGs transcriptome modifications induced by controlled ovarian stimulation (COS) or pathological conditions and their impact in reproduction. The transcriptome analysis of GCs could be a powerful tool to improve our knowledge about the pathways involved in oocyte development. This approach, associated with new technologies as RNA-seq could allow the identifications of new noninvasive biological markers of oocyte quality to increase the efficiency of clinical IVF. Moreover, GCs expression analysis could be useful to shed light on new therapeutic targets by providing new options for the treatment of infertility.
File in questo prodotto:
File Dimensione Formato  
10.1080@09513590.2016.1223288.pdf

Solo gestori archivio

Descrizione: Review Article
Tipologia: Documento in Post-print
Dimensione 466.45 kB
Formato Adobe PDF
466.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/667517
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 11
social impact