In this research, a multi-scenario numerical modeling was implemented to assess the effects of changes to abstraction patterns in the Sant’Angelo well-field (central Italy) and their implications on the aquifer hydrodynamic and the advective transport of contaminants. Once implemented and calibrated the steady-state numerical model by means of MODFLOW-2005, the well-field turning off scenario was modelled. In addition, the numerical results were analyzed by means of the post-processors ZONEBUDGET and MODPATH, to assess respectively the contribution of each hydrogeological feature to the total budget and the advective transport of contaminant particles. Comparing the two steady-state numerical models and the relative particle tracking analyses, the well-field turning off, although no longer acting as a hydraulic barrier, increased the residence time of contaminant particles and limited their mobility in the aquifer. Furthermore, the general decrease in groundwater abstractions also caused a higher increase in river flow, favoring contaminants’ dilution in surface water.
Multi-scenario numerical modeling applied to groundwater contamination: the Popoli Gorges complex aquifer case study (Central Italy)
Semeraro, Ron;Rusi, Sergio;Di Curzio, Diego
2018-01-01
Abstract
In this research, a multi-scenario numerical modeling was implemented to assess the effects of changes to abstraction patterns in the Sant’Angelo well-field (central Italy) and their implications on the aquifer hydrodynamic and the advective transport of contaminants. Once implemented and calibrated the steady-state numerical model by means of MODFLOW-2005, the well-field turning off scenario was modelled. In addition, the numerical results were analyzed by means of the post-processors ZONEBUDGET and MODPATH, to assess respectively the contribution of each hydrogeological feature to the total budget and the advective transport of contaminant particles. Comparing the two steady-state numerical models and the relative particle tracking analyses, the well-field turning off, although no longer acting as a hydraulic barrier, increased the residence time of contaminant particles and limited their mobility in the aquifer. Furthermore, the general decrease in groundwater abstractions also caused a higher increase in river flow, favoring contaminants’ dilution in surface water.File | Dimensione | Formato | |
---|---|---|---|
Di Curzio Rusi Semeraro AA SS 2018 27 361 49_58.pdf
accesso aperto
Descrizione: Articolo principale
Tipologia:
Documento in Post-print
Dimensione
4.57 MB
Formato
Adobe PDF
|
4.57 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.