Dual-calibrated fMRI is a multi-parametric technique that allows for the quantification of the resting oxygen extraction fraction (OEF), the absolute rate of cerebral metabolic oxygen consumption (CMRO 2 ), cerebral vascular reactivity (CVR) and baseline perfusion (CBF). It combines measurements of arterial spin labelling (ASL) and blood oxygenation level dependent (BOLD) signal changes during hypercapnic and hyperoxic gas challenges. Here we propose an extension to this methodology that permits the simultaneous quantification of the effective oxygen diffusivity of the capillary network (D C ). The effective oxygen diffusivity has the scope to be an informative biomarker and useful adjunct to CMRO 2 , potentially providing a non-invasive metric of microvascular health, which is known to be disturbed in a range of neurological diseases. We demonstrate the new method in a cohort of healthy volunteers (n = 19) both at rest and during visual stimulation. The effective oxygen diffusivity was found to be highly correlated with CMRO 2 during rest and activation, consistent with previous PET observations of a strong correlation between metabolic oxygen demand and effective diffusivity. The increase in effective diffusivity during functional activation was found to be consistent with previously reported increases in capillary blood volume, supporting the notion that measured oxygen diffusivity is sensitive to microvascular physiology.

Dual-calibrated fMRI measurement of absolute cerebral metabolic rate of oxygen consumption and effective oxygen diffusivity

Tomassini V.;Wise R. G.
2019

Abstract

Dual-calibrated fMRI is a multi-parametric technique that allows for the quantification of the resting oxygen extraction fraction (OEF), the absolute rate of cerebral metabolic oxygen consumption (CMRO 2 ), cerebral vascular reactivity (CVR) and baseline perfusion (CBF). It combines measurements of arterial spin labelling (ASL) and blood oxygenation level dependent (BOLD) signal changes during hypercapnic and hyperoxic gas challenges. Here we propose an extension to this methodology that permits the simultaneous quantification of the effective oxygen diffusivity of the capillary network (D C ). The effective oxygen diffusivity has the scope to be an informative biomarker and useful adjunct to CMRO 2 , potentially providing a non-invasive metric of microvascular health, which is known to be disturbed in a range of neurological diseases. We demonstrate the new method in a cohort of healthy volunteers (n = 19) both at rest and during visual stimulation. The effective oxygen diffusivity was found to be highly correlated with CMRO 2 during rest and activation, consistent with previous PET observations of a strong correlation between metabolic oxygen demand and effective diffusivity. The increase in effective diffusivity during functional activation was found to be consistent with previously reported increases in capillary blood volume, supporting the notion that measured oxygen diffusivity is sensitive to microvascular physiology.
File in questo prodotto:
File Dimensione Formato  
63_NeuroImage_2019.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: PDF editoriale
Dimensione 2.24 MB
Formato Adobe PDF
2.24 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/11564/716862
Citazioni
  • ???jsp.display-item.citation.pmc??? 14
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 21
social impact