Multidrug resistance (MDR) is a major obstacle to the effective treatment of cancer. Cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anticancer drugs (e.g. anthracyclines, Vinca alkaloids, taxanes, epipodophyllotoxins, and some of the newer antitumor drugs) is one of the more relevant mechanisms underlying MDR. P-gp belongs to the superfamily of ATP-binding cassette transporters and is encoded by the ABCB1 gene. Its overexpression in cancer cells has become a therapeutic target for circumventing MDR. As an alternative to the classical pharmacological strategy of the coadministration of pump inhibitors and cytotoxic substrates of P-gp and to other approaches applied in experimental tumor models (e.g. P-gp-targeting antibodies, ABCB1 gene silencing strategies, and transcriptional modulators) and in the clinical setting (e.g. incapsulation of P-gp substrate anticancer drugs into liposomes or nanoparticles), a more intriguing strategy for circumventing MDR is represented by the development of new anticancer drugs which are not substrates of P-gp (e.g. epothilones, second- and third-generation taxanes and other microtubule modulators, topoisomerase inhibitors). Some of these drugs have already been tested in clinical trials and, in most of cases, show relevant activity in patients previously treated with anticancer agents which are substrates of P-gp. Of these drugs, ixabepilone, an epothilone, was approved in the United States for the treatment of breast cancer patients pretreated with an anthracycline and a taxane. Another innovative approach is the use of molecules whose activity takes advantage of the overexpression of P-gp. The possibility of overcoming MDR using the latter two approaches is reviewed herein. © 2011 Wiley Periodicals, Inc.

Overcoming tumor multidrug resistance using drugs able to evade P-glycoprotein or to exploit its expression

Nobili S.
;
2012-01-01

Abstract

Multidrug resistance (MDR) is a major obstacle to the effective treatment of cancer. Cellular overproduction of P-glycoprotein (P-gp), which acts as an efflux pump for various anticancer drugs (e.g. anthracyclines, Vinca alkaloids, taxanes, epipodophyllotoxins, and some of the newer antitumor drugs) is one of the more relevant mechanisms underlying MDR. P-gp belongs to the superfamily of ATP-binding cassette transporters and is encoded by the ABCB1 gene. Its overexpression in cancer cells has become a therapeutic target for circumventing MDR. As an alternative to the classical pharmacological strategy of the coadministration of pump inhibitors and cytotoxic substrates of P-gp and to other approaches applied in experimental tumor models (e.g. P-gp-targeting antibodies, ABCB1 gene silencing strategies, and transcriptional modulators) and in the clinical setting (e.g. incapsulation of P-gp substrate anticancer drugs into liposomes or nanoparticles), a more intriguing strategy for circumventing MDR is represented by the development of new anticancer drugs which are not substrates of P-gp (e.g. epothilones, second- and third-generation taxanes and other microtubule modulators, topoisomerase inhibitors). Some of these drugs have already been tested in clinical trials and, in most of cases, show relevant activity in patients previously treated with anticancer agents which are substrates of P-gp. Of these drugs, ixabepilone, an epothilone, was approved in the United States for the treatment of breast cancer patients pretreated with an anthracycline and a taxane. Another innovative approach is the use of molecules whose activity takes advantage of the overexpression of P-gp. The possibility of overcoming MDR using the latter two approaches is reviewed herein. © 2011 Wiley Periodicals, Inc.
File in questo prodotto:
File Dimensione Formato  
32 Nobili et al Med Res Rev 2012.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 474.58 kB
Formato Adobe PDF
474.58 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/737262
Citazioni
  • ???jsp.display-item.citation.pmc??? 49
  • Scopus 155
  • ???jsp.display-item.citation.isi??? 134
social impact