Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox R)Cl 2][PF 6], [pyox R = (S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N′OH)Cl 2], III, and [Au(N,N′,O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2- carboxamide, N,N′H,OH, resulting from ring opening of bound pyox R ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC 50 values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. © 2011 Elsevier Inc. All rights reserved.

Gold(III) complexes with 2-substituted pyridines as experimental anticancer agents: Solution behavior, reactions with model proteins, antiproliferative properties

Nobili S.;
2012-01-01

Abstract

Gold(III) compounds form a family of promising cytotoxic and potentially anticancer agents that are currently undergoing intense preclinical investigations. Four recently synthesized and characterized gold(III) derivatives of 2-substituted pyridines are evaluated here for their biological and pharmacological behavior. These include two cationic adducts with 2-pyridinyl-oxazolines, [Au(pyox R)Cl 2][PF 6], [pyox R = (S)-4-benzyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, I; (S)-4-iso-propyl-2-(pyridin-2-yl)-4,5-dihydrooxazole, II] and two neutral complexes [Au(N,N′OH)Cl 2], III, and [Au(N,N′,O)Cl], IV, containing the deprotonated ligand N-(1-hydroxy-3-iso-propyl-2-yl)pyridine-2- carboxamide, N,N′H,OH, resulting from ring opening of bound pyox R ligand of complex II by hydroxide ions. The solution behavior of these compounds was analyzed. These behave as classical prodrugs: activation of the metal center typically takes place through release of the labile chloride ligands while the rest of the molecule is not altered; alternatively, activation may occur through gold(III) reduction. All compounds react eagerly with the model protein cyt c leading to extensive protein metalation. ESI MS experiments revealed details of gold-cyt c interactions and allowed us to establish the nature of protein bound metal containing fragments. The different behavior displayed by I and II compared to III and IV is highlighted. Remarkable cytotoxic properties, against the reference human ovarian carcinoma cell lines A2780/S and A2780/R were disclosed for all tested compounds with IC 50 values ranging from 1.43 to 6.18 μM in the sensitive cell line and from 1.59 to 10.86 μM in the resistant one. The common ability of these compounds to overcome cisplatin resistance is highlighted. The obtained results are thoroughly discussed in the frame of current knowledge on cytotoxic gold compounds. © 2011 Elsevier Inc. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
29 Maiore et al J Inorg Biochem, 2012.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 499.45 kB
Formato Adobe PDF
499.45 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/737270
Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 34
  • ???jsp.display-item.citation.isi??? 34
social impact