SARS-CoV-2 coronavirus has been recognized the causative agent of the recent and ongoing pandemic. Effective and specific antiviral agents or vaccines are still missing, despite a large plethora of compounds have been proposed and tested worldwide. New compounds are requested urgently and virtual screening can offer fast and robust predictions to investigate. Moreover, natural compounds were shown to exert antiviral effects and can be endowed with limited side effects and wide availability. Our approach consisted in the validation of a docking protocol able to refine the most suitable candidates, within the 31000 natural compounds of the natural product activity and species source (NPASS) library, interacting with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein. After the refinement process two natural compounds, castanospermine and karuquinone B, were shown to be the best-in-class derivatives in silico able to target an essential structure of the virus and to act in the early stage of infection.

Natural Products Database Screening for the Discovery of Naturally Occurring SARS-Cov-2 Spike Glycoprotein Blockers

Carradori S.
;
2020-01-01

Abstract

SARS-CoV-2 coronavirus has been recognized the causative agent of the recent and ongoing pandemic. Effective and specific antiviral agents or vaccines are still missing, despite a large plethora of compounds have been proposed and tested worldwide. New compounds are requested urgently and virtual screening can offer fast and robust predictions to investigate. Moreover, natural compounds were shown to exert antiviral effects and can be endowed with limited side effects and wide availability. Our approach consisted in the validation of a docking protocol able to refine the most suitable candidates, within the 31000 natural compounds of the natural product activity and species source (NPASS) library, interacting with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein. After the refinement process two natural compounds, castanospermine and karuquinone B, were shown to be the best-in-class derivatives in silico able to target an essential structure of the virus and to act in the early stage of infection.
File in questo prodotto:
File Dimensione Formato  
ChemistrySelect 2020 Carradori.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 2.59 MB
Formato Adobe PDF
2.59 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/737841
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 27
social impact