Aim: Cell therapies are hampered by poor survival and growth of grafts. We tested whether forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD) improves post-infarct revascularization and tissue repair by adipose tissue-derived mesenchymal stromal cells (AT-MSCs). Methods and results: We transplanted AT-MSCs overexpressing MYOCD and TERT in a murine model of acute myocardial infarction (AMI). We characterized paracrine effects of AT-MSCs. When transplanted into infarcted hearts of C57BL/6 mice, AT-MSCs overexpressing TERT and MYOCD decreased scar tissue and the intra-scar CD3 and B220 lymphocyte infiltration; and increased arteriolar density as well as ejection fraction compared with saline or mock-transduced AT-MSCs. These effects were accompanied by higher persistence of the injected cells in the heart, increased numbers of Ki-67+ and CD117+ cells, and the expression of cardiac actin and β-myosin heavy chain. Intramyocardial delivery of the secretome and its extracellular vesicle (EV)-enriched fraction also decreased scar tissue formation and increased arteriolar density in the murine AMI model. Proteomic analysis of AT-MSCs-EV-enriched fraction predicted the activation of vascular development and the inhibition of immune cell trafficking. Elevated concentrations of miR-320a, miR-150-5p and miR-126-3p associated with regulation of apoptosis and vasculogenesis were confirmed in the AT-MSCs-EV-enriched fraction. Conclusions: AT-MSCs overexpressing TERT and MYOCD promote persistence of transplanted aged AT-MSCs and enhance arteriolar density in a murine model of AMI. EV-enriched fraction is the component of the paracrine secretion by AT-MSCs with pro-angiogenic and anti-fibrotic activities.
Transplantation of telomerase/myocardin-co-expressing mesenchymal cells in the mouse promotes myocardial revascularization and tissue repair
Pieragostino D.Secondo
;Rossi C.;Guarnieri S.;Del Boccio P.;Mariggio M. A.Penultimo
;
2020-01-01
Abstract
Aim: Cell therapies are hampered by poor survival and growth of grafts. We tested whether forced co-expression of telomerase reverse transcriptase (TERT) and myocardin (MYOCD) improves post-infarct revascularization and tissue repair by adipose tissue-derived mesenchymal stromal cells (AT-MSCs). Methods and results: We transplanted AT-MSCs overexpressing MYOCD and TERT in a murine model of acute myocardial infarction (AMI). We characterized paracrine effects of AT-MSCs. When transplanted into infarcted hearts of C57BL/6 mice, AT-MSCs overexpressing TERT and MYOCD decreased scar tissue and the intra-scar CD3 and B220 lymphocyte infiltration; and increased arteriolar density as well as ejection fraction compared with saline or mock-transduced AT-MSCs. These effects were accompanied by higher persistence of the injected cells in the heart, increased numbers of Ki-67+ and CD117+ cells, and the expression of cardiac actin and β-myosin heavy chain. Intramyocardial delivery of the secretome and its extracellular vesicle (EV)-enriched fraction also decreased scar tissue formation and increased arteriolar density in the murine AMI model. Proteomic analysis of AT-MSCs-EV-enriched fraction predicted the activation of vascular development and the inhibition of immune cell trafficking. Elevated concentrations of miR-320a, miR-150-5p and miR-126-3p associated with regulation of apoptosis and vasculogenesis were confirmed in the AT-MSCs-EV-enriched fraction. Conclusions: AT-MSCs overexpressing TERT and MYOCD promote persistence of transplanted aged AT-MSCs and enhance arteriolar density in a murine model of AMI. EV-enriched fraction is the component of the paracrine secretion by AT-MSCs with pro-angiogenic and anti-fibrotic activities.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1537189120303128-main.pdf
Solo gestori archivio
Descrizione: Article
Tipologia:
PDF editoriale
Dimensione
7.35 MB
Formato
Adobe PDF
|
7.35 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.