Sustained oxidative stress and inflammation have been reported as the major factors responsible for the failure of tendon healing during rotator cuff tears (RCTs) and rotator cuff disease (RCD). Although, their therapeutic management remains still challenging. Carbonic anhydrases (CAs) are involved in many pathological conditions, and the overexpression of both CA9 and 12 in inflamed joints has been recently reported. Consequently, a selective CA9/12 inhibition could be a feasible strategy for improving tendon recovery after injury. In addition, since carbon monoxide (CO) has been proven to have an important role in modulating inflammation, CO releasing molecules (CORMs) can be also potentially suitable compounds. The present study aims at evaluating five newly synthesized dual-mode acting CA inhibitors (CAIs)-CORMs compounds, belonging to two chemical scaffolds, on tendon-derived human primary cells under H2O2 stimulation in comparison with Meloxicam. Our results show that compounds 2 and 7 are the most promising of the series in counteracting oxidative stress-induced cytotoxicity and display a better profile in terms of enhanced viability, decreased LDH release, and augmented tenocyte proliferation compared to Meloxicam. Moreover, compound 7, as a potent superoxide scavenger, exerts its action inhibiting NF-ĸB translocation and downregulating iNOS, whereas compound 2 is more effective in increasing collagen I deposition. Taken together, our data highlight a potential role of CA in RCTs and RCD and the prospective effectiveness of compounds acting as CAI-CORM during inflammation.

Dual Acting Carbon Monoxide Releasing Molecules and Carbonic Anhydrase Inhibitors Differentially Modulate Inflammation in Human Tenocytes

Gallorini, Marialucia
;
Zara, Susi;Cataldi, Amelia;Carradori, Simone
2021-01-01

Abstract

Sustained oxidative stress and inflammation have been reported as the major factors responsible for the failure of tendon healing during rotator cuff tears (RCTs) and rotator cuff disease (RCD). Although, their therapeutic management remains still challenging. Carbonic anhydrases (CAs) are involved in many pathological conditions, and the overexpression of both CA9 and 12 in inflamed joints has been recently reported. Consequently, a selective CA9/12 inhibition could be a feasible strategy for improving tendon recovery after injury. In addition, since carbon monoxide (CO) has been proven to have an important role in modulating inflammation, CO releasing molecules (CORMs) can be also potentially suitable compounds. The present study aims at evaluating five newly synthesized dual-mode acting CA inhibitors (CAIs)-CORMs compounds, belonging to two chemical scaffolds, on tendon-derived human primary cells under H2O2 stimulation in comparison with Meloxicam. Our results show that compounds 2 and 7 are the most promising of the series in counteracting oxidative stress-induced cytotoxicity and display a better profile in terms of enhanced viability, decreased LDH release, and augmented tenocyte proliferation compared to Meloxicam. Moreover, compound 7, as a potent superoxide scavenger, exerts its action inhibiting NF-ĸB translocation and downregulating iNOS, whereas compound 2 is more effective in increasing collagen I deposition. Taken together, our data highlight a potential role of CA in RCTs and RCD and the prospective effectiveness of compounds acting as CAI-CORM during inflammation.
2021
Inglese
ELETTRONICO
9
2 / Art. 141
1
17
17
CORM; Nrf2; carbonic anhydrase; iNOS; inflammation; rotator cuff; tendons
https://www.mdpi.com/2227-9059/9/2/141
no
9
info:eu-repo/semantics/article
262
Gallorini, Marialucia; Berardi, Anna C; Ricci, Alessia; Antonetti Lamorgese Passeri, Cristina; Zara, Susi; Oliva, Francesco; Cataldi, Amelia; Carta, F...espandi
1 Contributo su Rivista::1.1 Articolo in rivista
open
File in questo prodotto:
File Dimensione Formato  
biomedicines-09-00141-v3.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 5.49 MB
Formato Adobe PDF
5.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/742089
Citazioni
  • ???jsp.display-item.citation.pmc??? 6
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact