Background The social impacts generated by industrial waste treatment processes have not been studied enough, as shown in the literature. Social life cycle assessment studies have mainly focused on the assessment of products and less on industrial waste, especially wastewater, although potentially relevant from an environmental point of view, and also from a social one for various stakeholders. Purpose This case study concerns the social assessment of an innovative technology to treat the wastewater of a microelectronics company. In order to produce electronic components and semiconductors, the company has to treat and dispose of relevant wastewater streams containing various toxic substances. The wastewater streams need to be treated in order to protect the eco-system, representing a high cost for the company and a potential impact on the environment. For this reason, the company developed a LIFE project to demonstrate the viability to decrease the burdens on water bodies. The positive outcome of the test on the pilot plant paved the way for the construction of the full-scale plant that will treat all the wastewater generated by the company. The objective of this paper is the socio-economic assessment of a full-scale plant designed to treat three different kinds of wastewater. Methods The assessment of socio-economic potential impacts of a new technology has been carried out through the PSILCA (Product Social Impact Life Cycle Assessment) database implementation to evaluate 65 social indicators of a wastewater treatment plant. Results The line with the highest impact is the one which treats tetramethylammonium hydroxide; this is because this wastewater flow is the most abundant (14 and 43 times greater than the other wastewaters, respectively). The most affected stakeholder is the Local Community, followed by the Actors of the Value Chain; in fact, the results referred to the functional unit considered exceed 300,000 medium risk hours in both cases. For the Local Community this result arises from the indicator “Contribution to environmental load,” which is understandable considering the object of the study since this indicator includes health effects. As far as the Value Chain Actors stakeholder is concerned, the two indicators most impacted are “Corruption” and “Social responsibility along the supply chain”. The analysis conducted has also shown that upstream has a fundamental relevance for the social risks detected. Conclusions Considering the current lack of studies on both environmental and social impacts of wastewater treatment, and the fact that Social Life Cycle Assessment has not been widely used in this field, as emerged from literature review, this work is the first use of the PSILCA database to assess an industrial wastewater plant. The use of a social life cycle assessment database allows the value chain of a product system to be considered: the results show that most of the overall social risk derives from upstream sectors.

Social life cycle assessment of an innovative industrial wastewater treatment plant

Monica Serreli;Luigia Petti
;
Andrea Raggi;Alberto Simboli;
2021-01-01

Abstract

Background The social impacts generated by industrial waste treatment processes have not been studied enough, as shown in the literature. Social life cycle assessment studies have mainly focused on the assessment of products and less on industrial waste, especially wastewater, although potentially relevant from an environmental point of view, and also from a social one for various stakeholders. Purpose This case study concerns the social assessment of an innovative technology to treat the wastewater of a microelectronics company. In order to produce electronic components and semiconductors, the company has to treat and dispose of relevant wastewater streams containing various toxic substances. The wastewater streams need to be treated in order to protect the eco-system, representing a high cost for the company and a potential impact on the environment. For this reason, the company developed a LIFE project to demonstrate the viability to decrease the burdens on water bodies. The positive outcome of the test on the pilot plant paved the way for the construction of the full-scale plant that will treat all the wastewater generated by the company. The objective of this paper is the socio-economic assessment of a full-scale plant designed to treat three different kinds of wastewater. Methods The assessment of socio-economic potential impacts of a new technology has been carried out through the PSILCA (Product Social Impact Life Cycle Assessment) database implementation to evaluate 65 social indicators of a wastewater treatment plant. Results The line with the highest impact is the one which treats tetramethylammonium hydroxide; this is because this wastewater flow is the most abundant (14 and 43 times greater than the other wastewaters, respectively). The most affected stakeholder is the Local Community, followed by the Actors of the Value Chain; in fact, the results referred to the functional unit considered exceed 300,000 medium risk hours in both cases. For the Local Community this result arises from the indicator “Contribution to environmental load,” which is understandable considering the object of the study since this indicator includes health effects. As far as the Value Chain Actors stakeholder is concerned, the two indicators most impacted are “Corruption” and “Social responsibility along the supply chain”. The analysis conducted has also shown that upstream has a fundamental relevance for the social risks detected. Conclusions Considering the current lack of studies on both environmental and social impacts of wastewater treatment, and the fact that Social Life Cycle Assessment has not been widely used in this field, as emerged from literature review, this work is the first use of the PSILCA database to assess an industrial wastewater plant. The use of a social life cycle assessment database allows the value chain of a product system to be considered: the results show that most of the overall social risk derives from upstream sectors.
File in questo prodotto:
File Dimensione Formato  
Serreli2021_Article_SocialLifeCycleAssessmentOfAnI.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 3.36 MB
Formato Adobe PDF
3.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/770563
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 20
  • ???jsp.display-item.citation.isi??? 17
social impact