Mental workload (MW) represents the amount of brain resources required to perform concurrent tasks. The evaluation of MW is of paramount importance for Advanced Driver-Assistance Systems, given its correlation with traffic accidents risk. In the present research, two cognitive tests (Digit Span Test—DST and Ray Auditory Verbal Learning Test—RAVLT) were administered to participants while driving in a simulated environment. The tests were chosen to investigate the drivers’ response to predefined levels of cognitive load to categorize the classes of MW. Infrared (IR) thermal imaging concurrently with heart rate variability (HRV) were used to obtain features related to the psychophysiology of the subjects, in order to feed machine learning (ML) classifiers. Six categories of models have been compared basing on unimodal IR/unimodal HRV/multimodal IR + HRV features. The best classifier performances were reached by the multimodal IR + HRV features-based classifiers (DST: accuracy = 73.1%, sensitivity = 0.71, specificity = 0.69; RAVLT: accuracy = 75.0%, average sensitivity = 0.75, average specificity = 0.87). The unimodal IR features based classifiers revealed high performances as well (DST: accuracy = 73.1%, sensitivity = 0.73, specificity = 0.73; RAVLT: accuracy = 71.1%, average sensitivity = 0.71, average specificity = 0.85). These results demonstrated the possibility to assess drivers’ MW levels with high accuracy, also using a completely non-contact and non-invasive technique alone, representing a key advancement with respect to the state of the art in traffic accident prevention.

Classification of Drivers’ Mental Workload Levels: Comparison of Machine Learning Methods Based on ECG and Infrared Thermal Signals

Cardone D.
Primo
;
Perpetuini D.
Secondo
;
Filippini C.;Ricci F.;Gallina S.
Penultimo
;
Merla A.
Ultimo
2022-01-01

Abstract

Mental workload (MW) represents the amount of brain resources required to perform concurrent tasks. The evaluation of MW is of paramount importance for Advanced Driver-Assistance Systems, given its correlation with traffic accidents risk. In the present research, two cognitive tests (Digit Span Test—DST and Ray Auditory Verbal Learning Test—RAVLT) were administered to participants while driving in a simulated environment. The tests were chosen to investigate the drivers’ response to predefined levels of cognitive load to categorize the classes of MW. Infrared (IR) thermal imaging concurrently with heart rate variability (HRV) were used to obtain features related to the psychophysiology of the subjects, in order to feed machine learning (ML) classifiers. Six categories of models have been compared basing on unimodal IR/unimodal HRV/multimodal IR + HRV features. The best classifier performances were reached by the multimodal IR + HRV features-based classifiers (DST: accuracy = 73.1%, sensitivity = 0.71, specificity = 0.69; RAVLT: accuracy = 75.0%, average sensitivity = 0.75, average specificity = 0.87). The unimodal IR features based classifiers revealed high performances as well (DST: accuracy = 73.1%, sensitivity = 0.73, specificity = 0.73; RAVLT: accuracy = 71.1%, average sensitivity = 0.71, average specificity = 0.85). These results demonstrated the possibility to assess drivers’ MW levels with high accuracy, also using a completely non-contact and non-invasive technique alone, representing a key advancement with respect to the state of the art in traffic accident prevention.
File in questo prodotto:
File Dimensione Formato  
sensors-22-07300-v2.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 7.62 MB
Formato Adobe PDF
7.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/790864
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact