Pea proteins are being increasingly used for the formulation of plant-based products, but their globular structure and the presence of aggregates can affect their technological properties. In this study, the effect of high pressure homogenization (HPH) at different intensities (60 and 100 MPa) was investigated as a pre-treatment to modulate the techno-functional properties of a pea protein isolate (IP) extracted through an alkaline extraction/isoelectric precipitation process. SDS-PAGE, circular dichroism, thermal properties, total free sulfhydryl groups, antioxidant capacity and reducing properties were evaluated along with technological indices as solubility, WHC and OHC, interfacial tension and emulsifying capacity. HPH treatments were able to unfold and modify proteins structure, leading also to a change of the relative abundance of pea protein globulins (SDS-PAGE) and of the vicilin to legumin ratio. Solubility, WHC and OHC were improved, while interfacial tension and emulsifying capacity were weakly affected. However, an enhanced physical stability over time of the emulsions prepared with the 60 MPa-treated protein was found, likely as an effect of the decreased ratio between vicilin and legumin after treatment. Results of this study will contribute to deepen the effect of the HPH technology used as pre-treatment, adding useful results and expanding knowledge about the structure and techno-functional properties of native and modified pea proteins. © 2023 The Authors
High pressure homogenization to boost the technological functionality of native pea proteins
Flamminii F.Secondo
;
2023-01-01
Abstract
Pea proteins are being increasingly used for the formulation of plant-based products, but their globular structure and the presence of aggregates can affect their technological properties. In this study, the effect of high pressure homogenization (HPH) at different intensities (60 and 100 MPa) was investigated as a pre-treatment to modulate the techno-functional properties of a pea protein isolate (IP) extracted through an alkaline extraction/isoelectric precipitation process. SDS-PAGE, circular dichroism, thermal properties, total free sulfhydryl groups, antioxidant capacity and reducing properties were evaluated along with technological indices as solubility, WHC and OHC, interfacial tension and emulsifying capacity. HPH treatments were able to unfold and modify proteins structure, leading also to a change of the relative abundance of pea protein globulins (SDS-PAGE) and of the vicilin to legumin ratio. Solubility, WHC and OHC were improved, while interfacial tension and emulsifying capacity were weakly affected. However, an enhanced physical stability over time of the emulsions prepared with the 60 MPa-treated protein was found, likely as an effect of the decreased ratio between vicilin and legumin after treatment. Results of this study will contribute to deepen the effect of the HPH technology used as pre-treatment, adding useful results and expanding knowledge about the structure and techno-functional properties of native and modified pea proteins. © 2023 The AuthorsFile | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2665927123000679-main.pdf
accesso aperto
Tipologia:
PDF editoriale
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.