In this paper we prove that the unique entropy solution to a scalar nonlinear conservation law with strictly monotone velocity and nonnegative initial condition can be rigorously obtained as the large particle limit of a microscopic follow-the-leader type model, which is interpreted as the discrete Lagrangian approximation of the nonlinear scalar conservation law. The result is complemented with some numerical simulations.

Deterministic particle approximation of scalar conservation laws

Massimiliano D. Rosini
2017-01-01

Abstract

In this paper we prove that the unique entropy solution to a scalar nonlinear conservation law with strictly monotone velocity and nonnegative initial condition can be rigorously obtained as the large particle limit of a microscopic follow-the-leader type model, which is interpreted as the discrete Lagrangian approximation of the nonlinear scalar conservation law. The result is complemented with some numerical simulations.
File in questo prodotto:
File Dimensione Formato  
s40574-017-0132-2.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 546.18 kB
Formato Adobe PDF
546.18 kB Adobe PDF   Visualizza/Apri   Richiedi una copia
1605.05883.pdf

accesso aperto

Tipologia: Documento in Pre-print
Dimensione 250.05 kB
Formato Adobe PDF
250.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/805424
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 13
social impact