Isoxazoline is a nitrogen- and oxygen-containing five-membered heterocyclic scaffold with diverse biological profiles such as antimicrobial, fungicidal, anticancer, antiviral, analgesic and anti-inflammatory activity. Accordingly, the use of this peculiar structural framework in drug discovery is a successful strategy for the development of new drug candidates. Here, a chiral saccharin/isoxazoline hybrid was considered to investigate the tendency of the imine moiety of the heterocyclic ring to tautomerize to the enamine form in the presence of a basic catalyst. The pseudo-first-order rate constants for the base-catalyzed tautomerization process were measured in different solvents and at different temperatures by off-column kinetic experiments based on the amylose (3,5-dimethylphenylcarbamate)-type chiral stationary phase. The kinetic results obtained in this study may be a useful aid in the perspective of designing experimental conditions to control the stereointegrity of these types of pharmacologically active compounds and drive their synthesis toward the preferred, imine or enamine, tautomer.

Kinetic Study on the Base-Catalyzed Imine-Enamine Tautomerism of a Chiral Biologically Active Isoxazoline Derivative by HPLC on Amylose Tris(3,5-dimethylphenylcarbamate) Chiral Stationary Phase

Carradori S.;
2023-01-01

Abstract

Isoxazoline is a nitrogen- and oxygen-containing five-membered heterocyclic scaffold with diverse biological profiles such as antimicrobial, fungicidal, anticancer, antiviral, analgesic and anti-inflammatory activity. Accordingly, the use of this peculiar structural framework in drug discovery is a successful strategy for the development of new drug candidates. Here, a chiral saccharin/isoxazoline hybrid was considered to investigate the tendency of the imine moiety of the heterocyclic ring to tautomerize to the enamine form in the presence of a basic catalyst. The pseudo-first-order rate constants for the base-catalyzed tautomerization process were measured in different solvents and at different temperatures by off-column kinetic experiments based on the amylose (3,5-dimethylphenylcarbamate)-type chiral stationary phase. The kinetic results obtained in this study may be a useful aid in the perspective of designing experimental conditions to control the stereointegrity of these types of pharmacologically active compounds and drive their synthesis toward the preferred, imine or enamine, tautomer.
File in questo prodotto:
File Dimensione Formato  
molecules-28-06518-v2.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 2.74 MB
Formato Adobe PDF
2.74 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/816831
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact