This study aimed to assess the environmental effectiveness of vineyards utilising on-site weather stations integrated with a decision support system (DSS), and to identify the critical hotspots in smart farms that have already obtained integrated or organic certification. For this purpose, Life Cycle Assessment (LCA) methodology was applied. The research comprised three smart farms employing on-site weather stations and a traditional farm without advanced technologies, which served as a benchmark. The analysis revealed variations in environmental footprints driven by differences in farm management practices and soil characteristics. The results highlighted that smart farms, in compliance with integrated or organic certifications, focus on reducing inputs such as agrochemicals or water consumption. However, these reductions could shift the environmental burden to other impacts, such as those related to machinery use, which remained the most critical aspect across all vineyards considered. In some smart farms, critical issues involve other aspects, such as irrigation and fertilisation. The lack of awareness about the potential environmental impacts of the adopted technical options could make smart farms more impactful than traditional farms. Interestingly, this study found that solely implementing advanced technologies could fall short of achieving ecological objectives. This study emphasises the significance of utilising LCA as a valuable tool to support farmers in making informed decisions while adopting technological strategies to achieve environmentally sustainable goals.
Evaluating the environmental impacts of smart vineyards through the Life Cycle Assessment
Tascione, ValentinoPrimo
;Raggi, AndreaSecondo
;Petti, LuigiaPenultimo
;
2024-01-01
Abstract
This study aimed to assess the environmental effectiveness of vineyards utilising on-site weather stations integrated with a decision support system (DSS), and to identify the critical hotspots in smart farms that have already obtained integrated or organic certification. For this purpose, Life Cycle Assessment (LCA) methodology was applied. The research comprised three smart farms employing on-site weather stations and a traditional farm without advanced technologies, which served as a benchmark. The analysis revealed variations in environmental footprints driven by differences in farm management practices and soil characteristics. The results highlighted that smart farms, in compliance with integrated or organic certifications, focus on reducing inputs such as agrochemicals or water consumption. However, these reductions could shift the environmental burden to other impacts, such as those related to machinery use, which remained the most critical aspect across all vineyards considered. In some smart farms, critical issues involve other aspects, such as irrigation and fertilisation. The lack of awareness about the potential environmental impacts of the adopted technical options could make smart farms more impactful than traditional farms. Interestingly, this study found that solely implementing advanced technologies could fall short of achieving ecological objectives. This study emphasises the significance of utilising LCA as a valuable tool to support farmers in making informed decisions while adopting technological strategies to achieve environmentally sustainable goals.File | Dimensione | Formato | |
---|---|---|---|
STOTEN_2024.pdf
Solo gestori archivio
Tipologia:
PDF editoriale
Dimensione
2.96 MB
Formato
Adobe PDF
|
2.96 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.