Background and objectives Fetal head-circumference (HC) measurement from ultrasound (US) images provides useful hints for assessing fetal growth. Such measurement is performed manually during the actual clinical practice, posing issues relevant to intra- and inter-clinician variability. This work presents a fully automatic, deep-learning-based approach to HC delineation, which we named Mask-(RCNN)-C-2. It advances our previous work in the field and performs HC distance-field regression in an end-to-end fashion, without requiring a priori HC localization nor any postprocessing for outlier removal.Methods Mask-(RCNN)-C-2 follows the Mask-RCNN architecture, with a backbone inspired by feature-pyramid networks, a region-proposal network and the ROI align. The Mask-RCNN segmentation head is here modified to regress the HC distance field.Results Mask-(RCNN)-C-2 was tested on the HC18 Challenge dataset, which consists of 999 training and 335 testing images. With a comprehensive ablation study, we showed that Mask-(RCNN)-C-2 achieved a mean absolute difference of 1.95 nun (standard deviation = +/- 1.92 mm), outperforming other approaches in the literature.Conclusions With this work, we proposed an end-to-end model for HC distance-field regression. With our experimental results, we showed that Mask-(RCNN)-C-2 may be an effective support for clinicians for assessing fetal growth.

Mask-R2CNN: a distance-field regression version of Mask-RCNN for fetal-head delineation in ultrasound images

Moccia, Sara
;
2021-01-01

Abstract

Background and objectives Fetal head-circumference (HC) measurement from ultrasound (US) images provides useful hints for assessing fetal growth. Such measurement is performed manually during the actual clinical practice, posing issues relevant to intra- and inter-clinician variability. This work presents a fully automatic, deep-learning-based approach to HC delineation, which we named Mask-(RCNN)-C-2. It advances our previous work in the field and performs HC distance-field regression in an end-to-end fashion, without requiring a priori HC localization nor any postprocessing for outlier removal.Methods Mask-(RCNN)-C-2 follows the Mask-RCNN architecture, with a backbone inspired by feature-pyramid networks, a region-proposal network and the ROI align. The Mask-RCNN segmentation head is here modified to regress the HC distance field.Results Mask-(RCNN)-C-2 was tested on the HC18 Challenge dataset, which consists of 999 training and 335 testing images. With a comprehensive ablation study, we showed that Mask-(RCNN)-C-2 achieved a mean absolute difference of 1.95 nun (standard deviation = +/- 1.92 mm), outperforming other approaches in the literature.Conclusions With this work, we proposed an end-to-end model for HC distance-field regression. With our experimental results, we showed that Mask-(RCNN)-C-2 may be an effective support for clinicians for assessing fetal growth.
File in questo prodotto:
File Dimensione Formato  
Int J Comput Assist Radiol Surg 2021 Moccia.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 1.04 MB
Formato Adobe PDF
1.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/828882
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 12
social impact