Macrophage polarization towards the M1 phenotype under bacterial product-related exposure (LPS) requires a rapid change in gene expression patterns and cytokine production along with a metabolic rewiring. Metabolic pathways and redox reactions are such tightly connected, giving rise to an area of research referred to as immunometabolism. A role in this context has been paid to the master redox-sensitive regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and to the 5’-ectonucleotidase CD73, a marker related to macrophage metabolism rearrangement under pro-inflammatory conditions. In this light, a cell model of LPS-stimulated macrophages has been established and nine 4,7-dihydro-4-ethylpyrazolo[l,5-a]pyrimidin-7-ones with a potential anti-inflammatory effect have been administered. Our data highlight that two selected compounds (namely, 5 and 8) inhibit the LPS-induced Nrf2 nuclear translocation and ameliorate the activity rate of the antioxidant enzyme catalase. Additionally, the pyridine-containing compound (8) promotes the shift from the pro-inflammatory immunophenotype M1 to the pro-resolving M2 one, by downregulating CD80 and iNOS and by enhancing CD163 and TGFβ1 expression. Most importantly, CD73 is modulated by these compounds as well as the lactate production. Our data demonstrate that pyrazolo[l,5-a]pyrimidine derivatives are effective as anti-inflammatory compounds. Furthermore, these pyrazolo[l,5-a]pyrimidines exert their action via CD73-related signaling and modulation of cell metabolism of activated macrophages.

2-Substituted-4,7-dihydro-4-ethylpyrazolo[1,5-a]pyrimidin-7-ones alleviate LPS-induced inflammation by modulating cell metabolism via CD73 upon macrophage polarization

Ricci A.
Co-primo
;
Zara S.
Co-primo
;
Di Valerio V.;Sancilio S.;Cataldi A.;Carradori S.;Gallorini M.
Ultimo
2024-01-01

Abstract

Macrophage polarization towards the M1 phenotype under bacterial product-related exposure (LPS) requires a rapid change in gene expression patterns and cytokine production along with a metabolic rewiring. Metabolic pathways and redox reactions are such tightly connected, giving rise to an area of research referred to as immunometabolism. A role in this context has been paid to the master redox-sensitive regulator Nuclear factor erythroid 2-related factor 2 (Nrf2) and to the 5’-ectonucleotidase CD73, a marker related to macrophage metabolism rearrangement under pro-inflammatory conditions. In this light, a cell model of LPS-stimulated macrophages has been established and nine 4,7-dihydro-4-ethylpyrazolo[l,5-a]pyrimidin-7-ones with a potential anti-inflammatory effect have been administered. Our data highlight that two selected compounds (namely, 5 and 8) inhibit the LPS-induced Nrf2 nuclear translocation and ameliorate the activity rate of the antioxidant enzyme catalase. Additionally, the pyridine-containing compound (8) promotes the shift from the pro-inflammatory immunophenotype M1 to the pro-resolving M2 one, by downregulating CD80 and iNOS and by enhancing CD163 and TGFβ1 expression. Most importantly, CD73 is modulated by these compounds as well as the lactate production. Our data demonstrate that pyrazolo[l,5-a]pyrimidine derivatives are effective as anti-inflammatory compounds. Furthermore, these pyrazolo[l,5-a]pyrimidines exert their action via CD73-related signaling and modulation of cell metabolism of activated macrophages.
File in questo prodotto:
File Dimensione Formato  
lavoro Selleri.pdf

Solo gestori archivio

Tipologia: PDF editoriale
Dimensione 5.25 MB
Formato Adobe PDF
5.25 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/829411
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact