Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.

Unraveling the Epigenetic Landscape: Insights into Parkinson’s Disease, Amyotrophic Lateral Sclerosis, and Multiple Sclerosis

Di Martino, Pierpaolo;Marcozzi, Valentina;Ghinassi, Barbara;Di Baldassarre, Angela;Gaggi, Giulia
;
Di Credico, Andrea
2024-01-01

Abstract

Parkinson's disease (PD), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS) are examples of neurodegenerative movement disorders (NMDs), which are defined by a gradual loss of motor function that is frequently accompanied by cognitive decline. Although genetic abnormalities have long been acknowledged as significant factors, new research indicates that epigenetic alterations are crucial for the initiation and development of disease. This review delves into the complex interactions that exist between the pathophysiology of NMDs and epigenetic mechanisms such DNA methylation, histone modifications, and non-coding RNAs. Here, we examine how these epigenetic changes could affect protein aggregation, neuroinflammation, and gene expression patterns, thereby influencing the viability and functionality of neurons. Through the clarification of the epigenetic terrain underpinning neurodegenerative movement disorders, this review seeks to enhance comprehension of the underlying mechanisms of the illness and augment the creation of innovative therapeutic strategies.
File in questo prodotto:
File Dimensione Formato  
brainsci-14-00553.pdf

accesso aperto

Dimensione 3.26 MB
Formato Adobe PDF
3.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/837272
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact