Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses. PROTAR viruses were engineered to be attenuated by the ubiquitin-proteasome system, which mediates viral protein degradation in conventional host cells, but allows efficient replication in engineered cell lines for large-scale manufacturing. Depending on the degron-E3 ligase pairs, viruses showed varying degrees of attenuation. In animal models, PROTAR viruses were highly attenuated and elicited robust, broad, strain-dependent humoral, mucosal and cellular immunity. In addition, they provided cross-reactive protection against homologous and heterologous viral challenges. This study provides a systematic approach for developing safe and effective vaccines, with potential applications in designing live attenuated vaccines against other pathogens.
Proteolysis-targeting influenza vaccine strains induce broad-spectrum immunity and in vivo protection
Plebani, Roberto;
2025-01-01
Abstract
Generating effective live vaccines from intact viruses remains challenging owing to considerations of safety and immunogenicity. Approaches that can be applied in a systematic manner are needed. Here we created a library of live attenuated influenza vaccines by using diverse cellular E3 ubiquitin ligases to generate proteolysis-targeting (PROTAR) influenza A viruses. PROTAR viruses were engineered to be attenuated by the ubiquitin-proteasome system, which mediates viral protein degradation in conventional host cells, but allows efficient replication in engineered cell lines for large-scale manufacturing. Depending on the degron-E3 ligase pairs, viruses showed varying degrees of attenuation. In animal models, PROTAR viruses were highly attenuated and elicited robust, broad, strain-dependent humoral, mucosal and cellular immunity. In addition, they provided cross-reactive protection against homologous and heterologous viral challenges. This study provides a systematic approach for developing safe and effective vaccines, with potential applications in designing live attenuated vaccines against other pathogens.File | Dimensione | Formato | |
---|---|---|---|
Shen et al - Nature Microb - 2025_rid.pdf
Solo gestori archivio
Tipologia:
Documento in Post-print
Dimensione
9.74 MB
Formato
Adobe PDF
|
9.74 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.