Barrier function regulation, angiogenic potential, and immune response modulation are only a few of the many roles of the vascular system that nowadays represent one of the main targets for environmental pollutants, in particular, pesticides. We have used human umbilical vein endothelial cells (HUVECs) as an in vitro model to investigate the effects of pesticides on the activation of the NALP3-CASP1-IL-1β inflammatory pathway using real time PCR (RT-PCR) and immunofluorescence investigations, reactive oxygen species (ROS) generation, and morphological alterations with scanning electron microscopy (SEM) analysis. Our findings offer a comprehensive evaluation of the cellular and molecular damage induced by pesticide exposure and show strong inflammasome activation. They indicate that these chemicals may initiate necroptosis and drive prolonged inflammation in endothelial cells. This study provides crucial insights into how pesticides contribute to endothelial dysfunction, highlighting the need for further investigation into their inflammatory and immune-modulatory effects on vascular health.

Activation of the NALP3-CASP1-IL-1 β Inflammatory Pathway by Pesticide Exposure in Human Umbilical Vein Endothelial Cells

Mazzone, Antonella
Primo
;
Della Rocca, Ylenia
Secondo
;
Flamminii, Federica;Guarnieri, Simone;Trubiani, Oriana;Diomede, Francesca
Penultimo
;
Pizzicannella, Jacopo
Ultimo
2025-01-01

Abstract

Barrier function regulation, angiogenic potential, and immune response modulation are only a few of the many roles of the vascular system that nowadays represent one of the main targets for environmental pollutants, in particular, pesticides. We have used human umbilical vein endothelial cells (HUVECs) as an in vitro model to investigate the effects of pesticides on the activation of the NALP3-CASP1-IL-1β inflammatory pathway using real time PCR (RT-PCR) and immunofluorescence investigations, reactive oxygen species (ROS) generation, and morphological alterations with scanning electron microscopy (SEM) analysis. Our findings offer a comprehensive evaluation of the cellular and molecular damage induced by pesticide exposure and show strong inflammasome activation. They indicate that these chemicals may initiate necroptosis and drive prolonged inflammation in endothelial cells. This study provides crucial insights into how pesticides contribute to endothelial dysfunction, highlighting the need for further investigation into their inflammatory and immune-modulatory effects on vascular health.
File in questo prodotto:
File Dimensione Formato  
2025 Activation_Mazzone.pdf

accesso aperto

Tipologia: PDF editoriale
Dimensione 5.58 MB
Formato Adobe PDF
5.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/861574
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact