The hilly landscape of the Periadric area in Central Italy is characterized by mainly marly– clayey foredeep basin deposits (Plio–Pleistocene age). These lithotypes are generally considered aquicludes, if compared with the regional limestone aquifers of Apennines. However, a coarsening upward trend characterizes the upper portion of this stratigraphic sequence, with arenaceous deposits and even conglomerates on the top. From a geomorphological viewpoint, the areas with coarser outcrops show a flat shape and sub‐vertical slopes, like boundaries. At the base of these scarps, springs can be found at the interface between coarse and fine deposits, whereas these arenaceous bodies are actual aquifers. Until now, the hydrodynamics and hydrochemical features of this kind of aquifer have not been investigated deeply, because they have always been considered a worthy water resource. However, they could play a crucial role in integrated water management, especially to cope with climate changes and drought periods. Considering these, the main purpose of this study was to investigate from a hydrogeological point of view and to assess the groundwater quantity and quality. Five examples throughout the Abruzzo region were considered. For evaluation and comparisons between water resources, the water volume that infiltrates yearly at each squared kilometer of an aquifer (Mm3/y/km2) was applied. This value was calculated through three different approaches to provide a recharge estimation for this kind of aquifer that is as exhaustive and representative as possible. The results allowed us to characterize the hydrogeological model and to quantify the resources between 0.1 and 0.16 Mm3/y/km2, to be suitable for multi–purpose utilization.

Evaluation of groundwater resources in minor plio‐pleistocene arenaceous aquifers in central Italy

Di Curzio Diego;Rusi Sergio
;
Di Giovanni Alessia;
2021-01-01

Abstract

The hilly landscape of the Periadric area in Central Italy is characterized by mainly marly– clayey foredeep basin deposits (Plio–Pleistocene age). These lithotypes are generally considered aquicludes, if compared with the regional limestone aquifers of Apennines. However, a coarsening upward trend characterizes the upper portion of this stratigraphic sequence, with arenaceous deposits and even conglomerates on the top. From a geomorphological viewpoint, the areas with coarser outcrops show a flat shape and sub‐vertical slopes, like boundaries. At the base of these scarps, springs can be found at the interface between coarse and fine deposits, whereas these arenaceous bodies are actual aquifers. Until now, the hydrodynamics and hydrochemical features of this kind of aquifer have not been investigated deeply, because they have always been considered a worthy water resource. However, they could play a crucial role in integrated water management, especially to cope with climate changes and drought periods. Considering these, the main purpose of this study was to investigate from a hydrogeological point of view and to assess the groundwater quantity and quality. Five examples throughout the Abruzzo region were considered. For evaluation and comparisons between water resources, the water volume that infiltrates yearly at each squared kilometer of an aquifer (Mm3/y/km2) was applied. This value was calculated through three different approaches to provide a recharge estimation for this kind of aquifer that is as exhaustive and representative as possible. The results allowed us to characterize the hydrogeological model and to quantify the resources between 0.1 and 0.16 Mm3/y/km2, to be suitable for multi–purpose utilization.
File in questo prodotto:
File Dimensione Formato  
hydrology-08-00121-v2 def.pdf

accesso aperto

Descrizione: Article
Tipologia: PDF editoriale
Dimensione 3.02 MB
Formato Adobe PDF
3.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11564/760178
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact